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Abstract

Deploying generalist robots that can learn and adapt to new tasks at scale without extensive human

e↵ort has been a longstanding goal in robotics. Early approaches in robotics relied heavily on manual

engineering, which do not scale easily. This has motivated recent interest in learning-based methods

for robotics, such as imitation learning (IL) and reinforcement learning (RL), that scale with data.

While IL learns direct state-action correspondences, it requires high-quality action labels to learn

successfully, thus requiring substantial human e↵ort in collecting demonstrations. This process is

costly to scale, especially as robot hardware and teleoperation systems become increasingly complex.

In comparison, RL o↵ers a scalable alternative by allowing robots to learn and explore by optimizing

a reward signal, thereby learning robust behaviors through interaction without significantly scaling

up human data collection. However, RL faces practical challenges in sample complexity and task-

specific reward engineering, which is challenging in real-world settings.

This thesis focuses on the problem of scaling robot learning to new tasks, objects, and envi-

ronments without proportionally scaling the amount of human e↵ort required. We analyze two

data-e�cient RL approaches that tackle these challenges: (1) real-world autonomous RL shaped by

VLM-generated rewards, and (2) sim-to-real RL from one human demonstration. In the first part of

this thesis, we present a method that facilitates autonomous RL fine-tuning of policies pre-trained on

diverse human teleoperated data, enabling robots to improve through interaction and self-practice.

In the second part of this thesis, we propose a real-to-sim-to-real RL framework for learning ro-

bust dexterous manipulation skills from one human hand video demonstration, by extracting dense

object-centric rewards and useful pregrasp priors from the video for training RL policies in sim-

ulation. We conclude by analyzing the opportunities and challenges of real-world RL, sim-to-real

RL, and parallel developments in robotic foundation models, and discuss how we might unify these

paradigms to most e�ciently leverage data provided by humans to train robust robot policies.
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Chapter 1

Introduction

Deploying generalist robots that can learn and adapt to new tasks at scale without extensive hu-

man e↵ort has been a longstanding goal in robotics. Early approaches in robotics relied heavily on

manual engineering, crafting task-specific controllers, designing bespoke perception pipelines, and

hand-tuning reward functions for each new skill [59, 113]. While these methods can yield impres-

sive performance in narrow domains, they do not scale easily: every new object, environment, or

manipulation primitive demands additional human supervision.

These limitations of manual engineering for robotics have motivated recent interest in learning-

based methods that scale with data, specifically imitation learning (IL) and reinforcement learning

(RL). These paradigms have shown promising results that point towards generalizable and scalable

robotics by enabling robots to acquire manipulation skills by learning from data [5, 49, 69]. To that

end, large-scale robot data collection e↵orts [19, 28, 126] in the form of demonstrations provided by

human experts have been key sources of data for training these models.

However, several technical challenges remain. While IL learns direct state-action correspondences

and scales well with diverse expert demonstrations, this often requires substantial human e↵ort in

the form of large-scale demonstration collection via teleoperated demonstrations [3, 5, 19, 46, 56, 69]

or motion capture [11, 119, 128]. Even after training on large amounts of data, the resultant policies

often struggle with robust recovery from failures or out-of-distribution states, unless such behaviors

are demonstrated. Adapting or fine-tuning policies for new tasks also requires a moderate number of

demonstrations, representing a non-trivial cost to scaling to new tasks [56, 57]. Furthermore, most

large-scale robotic data collection e↵orts have used simple robotic arms with parallel-jaw grippers [19,

28, 55, 126]. Scaling up human demonstration collection can therefore be expensive and impractical,

especially as robot hardware becomes more complex than the platforms traditionally used for robot

learning, for instance in dexterous manipulation or whole-body control.

For scalable deployment in diverse real-world settings, robotic systems should allow human users

to specify goals easily and flexibly with high-level instructions, without having to dramatically scale

1



CHAPTER 1. INTRODUCTION 2

teleoperated data collection and human e↵ort. RL hence o↵ers a promising alternative by allowing

robotic agents to learn new tasks by optimizing a reward signal, demonstrating potential for scalable

learning. Through exploration, RL policies can also generalize beyond the behaviors demonstrated

in expert-provided trajectories and learn more robust behaviors, addressing a key limitation of IL.

Furthermore, by specifying a reward function, RL can autonomously improve with minimal human

intervention, enabling autonomous learning at scale. However, RL faces significant challenges in

sample complexity: the high cost of real-world robot interaction makes conventional RL approaches

impractical as they typically require thousands or millions of environment interactions to learn

e↵ective policies [27, 148]. Furthermore, the challenge of tedious task-specific reward engineering,

especially in unstructured, real-world settings, can introduce bias and make performance brittle.

Despite these challenges, we believe RL o↵ers a promising path toward scalable robot learning

with minimal human e↵ort as it enables robots to learn through interaction in their own embodi-

ments. This opens up several key advantages: it enables robots to discover solutions more optimal

for their own embodiments than merely imitating human behaviors; it can learn robust recovery

behaviors through exploration; it can adapt to changing dynamics and unforeseen circumstances;

and it allows for continuous improvement with minimal additional human demonstrations. By fo-

cusing on RL as our primary learning paradigm, we can leverage its inherent ability to discover novel

solutions through trial and error, optimize behavior beyond human demonstrations, and adapt to

dynamic conditions. The challenge is addressing RL’s limitations, namely sample e�ciency and

reward specification, through strategic integration with other techniques. The approaches presented

in this thesis aim to harness RL’s advantages while dramatically reducing the human e↵ort required

by (1) leveraging foundation models to automatically generate reward signals, and (2) extracting

useful abstractions from minimal human demonstrations for task specification and guidance.

Modern vision–language models (VLMs) represent a promising solution to RL’s reward specifi-

cation challenge. The rapid development of foundation models [29] trained on broad, Internet-scale

data demonstrate remarkable adaptability to downstream tasks via in-context learning or parameter-

e�cient fine-tuning. In robotics, researchers have begun to harness the commensense understanding

in pre-trained foundation models for robotic tasks [1, 25, 43, 68]. While some works derive rewards

implicitly via visual representations of large pre-trained models [77, 78, 89], we explore explicit

approaches to eliciting useful object representations embedded in VLMs zero-shot via mark-based

visual prompting [30, 138]. By prompting VLMs to identify task-relevant a↵ordances, object states,

and waypoints, we can derive dense reward signals that guide RL exploration e↵ectively without

task-specific reward engineering. This approach addresses a critical bottleneck in policy fine-tuning

with RL, while maintaining flexibility to specify diverse tasks through natural language. We demon-

strate that VLM-generated dense rewards derived from a↵ordance representations significantly im-

prove sample e�ciency of fine-tuning multi-task policies with RL, enabling robots to learn through

interaction and self-practice in an autonomous, data-e�cient manner.
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Complementary to leveraging VLMs for reward specification, we also investigate formulating

useful task abstractions to guide RL policy training using minimal human demonstrations. Tra-

ditional IL approaches typically require hundreds or thousands of demonstrations to learn robust

policies, which is impractical and often suboptimal, especially for complex embodiments like multi-

fingered dexterous hands. Instead of using demonstrations as direct examples to imitate, we propose

using them as sources of task specification and guidance for exploration via RL. By extracting ob-

ject pose trajectories and human pre-grasp poses from as little as one demonstration, we can define

embodiment-agnostic reward functions and provide advantageous initializations for exploration. This

perspective shifts the role of human data from being the primary learning signal to being a strategic

resource that bootstraps and guides RL. Through RL in simulation, policies can learn behaviors

optimal for the robot’s specific embodiment through online interaction, potentially discovering so-

lutions that di↵er from but outperform direct imitation of human demonstrations. This approach

is particularly valuable for dexterous manipulation, where morphological di↵erences between hu-

man hands and robotic end-e↵ectors make direct imitation challenging. Our work demonstrates the

importance of dense, object-centric rewards, useful priors from human-provided object grasps, and

domain-randomized simulation to train robust RL policies that can achieve zero-shot sim-to-real

transfer from a single human demonstration. This highlights RL’s potential to dramatically reduce

the amount human e↵ort required for learning complex robotic manipulation skills.

This thesis focuses on the problem of scaling robot learning to new tasks, objects, and environ-

ments, without proportionally scaling the amount of human e↵ort required. We present several ideas

to address a critical challenge in the field: how can we most e�ciently leverage data provided by

humans to train robust robot policies? To explore this question, we present two data-e�cient RL

approaches: (1) real-world autonomous RL shaped by VLM-generated rewards, and (2) sim-to-real

RL from one human demonstration. In Section 2, we present Keypoint-based A↵ordance Guidance

for Improvements (KAGI), a method for facilitating autonomous RL fine-tuning of policies pre-

trained on diverse human teleoperated data using VLM-generated shaping rewards. In Section 3,

we propose Human2Sim2Robot, a real-to-sim-to-real RL framework for training robust dexterous

manipulation policies from a single human hand RGB-D video demonstration. Finally, in Section 4,

we conclude our discussion by connecting the works presented with parallel research developments

that facilitate scalable robot learning with minimal human e↵ort.

This thesis covers works submitted for publication from [65, 73]. In Lee et al. [2024], I led project

ideation and scoping, end-to-end methodology development and iteration, experiment design and

implementation, paper writing and presentation, mentored by Annie Xie, Profs. Kuan Fang and

Chelsea Finn. In Lum et al. [2025], which I co-led with Tyler Lum, I contributed to project ideation

and scoping, methodology development (particularly real-to-sim, human demonstration processing,

RL formulation, inference-time deployment), experiment design and implementation, paper writing

and presentation, mentored by Profs. Jeannette Bohg and C. Karen Liu.



Chapter 2

Autonomous Reinforcement

Learning via Visual A↵ordances

Much of recent robot learning research has been dedicated to developing generalist robots that

can learn and adapt to new tasks. Typically, this is achieved by collecting a large amount of

demonstration data, often in the same domain and manually teleoperated by a human expert, which

is costly and limits generalization. Ideally, robotic systems should allow human users to specify

reward functions easily and flexibly with high-level instructions. Reinforcement learning (RL) holds

great promise of enabling robots to learn new tasks autonomously by optimizing a reward signal.

Prior work has sought to improve the sample e�ciency of these algorithms by pre-training on large

o✏ine datasets [60, 61, 62, 84, 88, 139]. However, learning robust reward functions still requires

careful engineering or large amounts of data [31, 32, 38, 115, 133].

Recent advances in large language models (LLMs) and vision-language models (VLMs) trained on

Internet-scale data show promising results in breaking down complex language instructions into task

plans [1, 4, 8, 25, 42, 43], performing visual reasoning in varied contexts [9, 92, 138], and generating

coarse robot motions for simple manipulation tasks [4, 42, 47, 86, 92, 129]. However, fine-tuning

large pre-trained models to perform such tasks typically requires extensive human supervision, such

as teleoperated demonstrations or feedback on whether the task was successfully completed. A group

of prior work uses the generalization capabilities of LLMs/VLMs to solve open sets of tasks through

prompt engineering and in-context learning [30, 44, 68], but these works use external motion planners

and skill primitives to generate low-level actions, which require significant engineering e↵orts and

are not robust. Another line of work prompts LLMs/VLMs to generate rewards for policy training

via code or plan motions to solve the task [79, 109, 143], though existing approaches are only applied

to high-level state spaces, navigation, simulated tasks, or coarse manipulation, and can fall short on

real-world manipulation tasks requiring sophisticated spatial reasoning over visual inputs.

4
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Figure 2.1: Keypoint-based A↵ordance Guidance for Improvements (KAGI) computes dense

rewards defined using a↵ordance keypoints and waypoint trajectories inferred by a VLM. Our dense rewards

help to shape learned behaviors, facilitating e�cient online fine-tuning across diverse real-world tasks.

Defining explicit rewards using pre-trained VLMs is hence an attractive approach for learning

manipulation tasks. Thus far, VLMs have mainly been used to generate sparse rewards [80, 124,

139], which often leads to less e�cient learning. VLMs hold much richer geometric and semantic rep-

resentations that we can elicit, such as reasoning about the a↵ordances of objects and environments.

In this work, we leverage insights on e↵ective visual prompting techniques [30, 138] to generate a↵or-

dance keypoints and waypoint trajectories, from which we directly derive dense rewards to improve

the e�ciency of online fine-tuning with RL.

We present Keypoint-based A↵ordance Guidance for Improvements (KAGI), a method for

fine-tuning policies pre-trained on diverse data using shaping rewards generated by VLMs. KAGI

enables robots to learn autonomously through interaction and self-practice: our method uses open-

vocabulary visual prompting to extract a↵ordance keypoint representations zero-shot from VLMs

and compute waypoint-based dense rewards (Figure 2.1), which we integrate into an autonomous RL

system that uses sparse rewards from a fine-tuned VLM [139]. KAGI demonstrates improved success

rates on complex manipulation tasks while being robust to reduced in-domain expert demonstrations,

which systems using only sparse rewards or open-loop primitives struggle to generalize to.
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2.1 Related Work

2.1.1 Leveraging Foundation Models for Robotics

Planning and high-level task reasoning. The rapid development of foundation models has

drawn significant attention [29], demonstrating that models trained on Internet-scale data are highly

adaptable to a wide range of downstream tasks, including robotics. Foundation models have enabled

high-level planning and reasoning for embodied agents [1, 42, 43, 70, 104, 114, 145], generated sub-

goals [24, 40, 109], and generated coarse motions for manipulation [3, 42, 47, 86, 92, 129]. These

impressive results show great potential in harnessing the rich knowledge and reasoning capabilities

of foundation models for tackling robotic manipulation tasks.

Despite the rapid development of LLMs for robotic control, recent works have investigated using

multi-modal models to jointly provide visual and language prompts to robotic agents [25, 34, 47, 92].

These approaches recognize that converting visual observations into language descriptions and plan-

ning solely with language loses rich information from the visual modality for scene understanding.

Though LLMs can provide general priors for spatial planning and reasoning, they must be properly

grounded to generate accurate responses about real-world environments [39, 41, 44, 131, 137]. Our

work harnesses state-of-the-art VLMs to facilitate reasoning in both language and image domains.

We leverage the image domain by computing rewards in image space to bridge high-level LLM plans

with low-level actions for embodied tasks.

Spatial reasoning with VLMs. Language provides a highly natural interface for providing

task instructions and specifying goals. That said, robotics relies heavily on accurately perceiving and

interacting with the environment. Modern VLMs, such as GPT-4o [96] and Gemini [33], demon-

strate promising capabilities combining reasoning with environment perception via visual inputs.

Recent approaches have explored using VLMs for generating shaping rewards via code [79, 143],

reward estimation [89, 109], or preference-based learning [130]. Our work focuses on directly ob-

taining rewards zero-shot from VLMs by leveraging the rich geometric and semantic representations

that VLMs trained on Internet-scale data possess, such that VLM-generated dense rewards can be

used e↵ectively in closed-loop autonomous RL systems. Our approach is inspired by works that

use generalizable and accurate keypoint-based reasoning of VLMs for zero-shot manipulation [30,

45, 92, 138], translating high-level plans into low-level robot actions. Beyond zero-shot open-loop

manipulation, our work presents a novel application of open-vocabulary visual prompting to improve

policies pre-trained on diverse data via online RL fine-tuning with VLM-defined dense rewards.

Modern VLMs can derive rewards in image space for learning state-action mappings via RL,

enabling robots to learn through trial-and-error without training skill policies via imitation learning,

which are in comparison more costly and di�cult to scale. A key contribution of our work is using

VLMs to determine task completion (sparse rewards) and specify intermediate waypoints as goals

(dense rewards), where prior works focus mainly on the former [80, 124, 139]. Our work explores
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using mark-based visual prompting (e.g., grid lines and object segmentations [105]) to augment raw

image observations and service as guidance to facilitate semantic reasoning in VLMs, leveraging

pre-trained representations in VLMs as zero-shot reward predictors.

2.1.2 Autonomous Reinforcement Learning

Online RL is the paradigm by which an agent gathers data through interaction with the environment,

then stores this experience in a replay bu↵er to update its policy. This contrasts with o✏ine RL,

where an agent updates its policy using previously collected data without itself interacting with

the environment. In autonomous RL, an agent autonomously practices skills and gathers real-world

experience online. This approach holds great promise for scalable robot learning as agents learn

through their own experience and do not require manual environment resets between trials [110].

Autonomous RL is di�cult to implement in the real world, with the primary challenges being

sample complexity, providing well-shaped rewards, and continual reset-free training. Several works

have developed reset-free systems that reduce human interventions [2, 35, 117, 139], but reward

shaping is an open problem. As manually specified rewards are di�cult to engineer and easy to

exploit, there is great potential to learn rewards from o✏ine data or large pre-trained models. The

large bank of image and video datasets, plus the fast inference speed and accessibility of large

pre-trained models, could provide more precise and informative shaping rewards.

RoboFuME [139] is a recent work leveraging a reset-free pre-train fine-tune paradigm to train

manipulation policies via autonomous RL. RoboFuME pre-trains o✏ine RL policies on diverse o✏ine

data [28, 126] and in-domain demonstrations, then fine-tunes a sparse reward classifier [147] for

online policy fine-tuning. However, online RL su↵ers when reward signals are too sparse, and fine-

tuning the reward classifier requires a substantial number of in-domain demonstrations per task,

which is costly but also makes the system more brittle and less robust to generalization. Our work

similarly focuses on the pre-train fine-tune paradigm, specifically on improving the e�ciency and

robustness of online fine-tuning, enabling e↵ective adaptation of RL policies pre-trained on diverse

datasets. To do so, inspired by recent work extracting rewards from VLMs to guide zero-shot robotic

manipulation [30, 80, 124] and online adaptation [134, 139], we leverage a↵ordance representations

extracted zero-shot from VLMs to tackle the dense reward shaping problem for online RL.

2.2 Methodology

Problem Statement. We propose Keypoint-based A↵ordance Guidance for Improvements (KAGI)

to facilitate autonomous fine-tuning on unseen tasks as shown in Figure 2.2. We consider prob-

lems that can be formulated as a partially observable Markov Decision Process (POMDP) tuple

(S,A,O, �, f, p, r, d0) where S is the state space, A is the action space, O is the observation space,
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Figure 2.2: Diagrammatic illustration of KAGI. KAGI consists of two components. The first compo-

nent leverages a VLM to select from a set of a↵ordance keypoints, then generate a waypoint sequence. The

second component involves per timestep reward computation for each frame in the episode replay bu↵er,

computing dense reward with respect to the waypoint sequence and a sparse reward derived from a success

classifier. The dense reward is used for online RL if the sparse reward is 0, else the sparse reward is used.

� 2 (0, 1) is the discount factor, r(s, a) is the reward function and d0(s) is the initial state distribu-

tion. The dynamics are governed by a transition function p(s0|s, a). The observations are generated

by an observation function f(o|s). The goal of RL is to maximize the expected sum of discounted

rewards E⇡[
P1

t=1 �
t
r(st, at)]. In this work, we use RGB image-based observations. The reward func-

tion is typically hand-engineered or learned, for instance via examples of task success and failure [31,

32, 38, 115, 133, 139]. We also use a sparse task completion reward (i.e., r(s, a) 2 {0, 1}), acquired

with systems like RoboFuME [139].

Our system consists of an o✏ine pre-training phase and an online fine-tuning phase, where

the latter phase requires a reward function to label successes and failures. A sparse reward is

typically easier to specify but, with it, RL algorithms require more samples to learn a successful

policy, because the agent must encounter success through its own exploration. In comparison, a

dense reward provides continuous feedback that guides the agent towards success. KAGI aims

to provide the latter type of feedback by augmenting sparse task completion rewards with dense

shaping rewards. Specifically, dense rewards are calculated with respect to intermediate waypoints

marking trajectory points towards the goal. We find that such guidance can facilitate more e�cient

and generalizable online learning than sparse rewards alone.

KAGI: Keypoint-Based Reward Estimation via Visual Prompting. We employ an

vision language model (VLM) to estimate dense rewards to facilitate fine-tuning of a pre-trained

policy. We prompt the VLM to select appropriate grasp and target keypoints for the task, inspired by

recent visual prompting techniques [30]. Then, the estimated rewards are used to generate a coarse

trajectory of how the robot should complete the task. We then assign rewards to each timestep of

an RL episode based on how well it follows this trajectory.
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Our method thus consists of two main stages:

1. Keypoint inference via mark-based visual prompting. We take the first observation

in the episode o0, consisting of a top-down image o
d
0 and a side view image o

s
0. Our goal

is to create a candidate set of grasp and target keypoints that GPT-4o can select from. We

preprocess these images by (1) passing o
d
0 through SAM 2 [105] to get segmentations of relevant

objects and sample five points from their masks, and (2) overlaying a 6⇥6 grid and the sampled

keypoints on top of od0 to get õd. For the side-view image, we augment os0 with evenly-spaced

labeled horizontal lines to get õ
s, providing depth information that is not available in the

top-down view. See Figures 2.3a and 2.3b for sample processed inputs. We use this density of

grid lines as [30] and preliminary tests found that this was most suitable for GPT-4o to reason

with. We pass õ
d and õ

s with a language instruction and metaprompt to GPT-4o, which

generates block sequence. This sequence is a list of tuples (x, y, z), where (x, y) is a grid

point chosen from õ
d representing a position in the xy-plane from top-down and z is chosen

from õ
s representing height in the z-axis from the side view. Dense rewards are calculated

with respect to block sequence in the next step.

2. Waypoint-based reward assignment. For each frame in the episode, we compute the robot

position in image space. We use two fitted RANSAC regressors, one for each camera view, to

compute the robot position (xt
rob, y

t
rob, z

t
rob), where (xt

rob, y
t
rob) is from the top-down and z

t
rob

is from the side view. Optionally, we can use pixel trackers [50] to track a specific point on

the object (xt
obj, y

t
obj, z

t
obj) to additionally define rewards based on object poses. Using these

coordinates, we compute the nearest block to the robot position in block sequence, Bi
rob (see

Figure 2.3c for an example). We compute a reward r
t
rob is based on the L2 distance from the

robot position to the block after the closest block in block sequence, Bi+1
rob . We use the next

block to encourage progression towards the goal and avoid stagnating at the current position.

We transform the distance such that reward is between 0 and 1: rt = 0.5 · (1 � tanh(dist)).

The reward is 1 when the sparse reward is 1, otherwise it is our dense reward. This reward is

then optimized using an online RL algorithm [111].

To optimize this reward, we build on RoboFuME [139], an autonomous RL pipeline that learns

from image observations. RoboFuME requires a set of forward and backward task demonstrations,

and pre-trains a policy on this data and the Bridge dataset [28, 126]. For the reward model,

it fine-tunes MiniGPT-4 [147] as a success classifier using the in-domain demonstrations and a

few additional failure examples. We augment these sparse rewards with our waypoint-based dense

rewards to combine the benefits of both modes of feedback.

From the VLM-generated waypoint trajectory, we use the centroid of each grid tile and height

from the side-view to create a 3D coordinate trajectory. We calculate the L2 distance between the

current robot position and target waypoint in image space, and pass each distance through a modified
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(a) Top-down view (b) Side view (c) VLM Trajectory

Figure 2.3: Example of annotated images to VLM (2.3a, 2.3b) and VLM-generated trajectory

(2.3c). In 2.3a, teal points labeled P1-5 denote grasp keypoints, blue points labeled Q1-5 denote target

keypoints for the VLM to select from. In 2.3c, orange point is robot position, green tiles denote the generated

trajectory, and arrows denote motion direction. KAGI’s dense reward formulation encourages the robot to

move to the next block, following the green arrow.

tanh function, so rdense = 0.5(1 � tanh (�(dt � ')), where dt is the L2 distance between the robot

position and target waypoint at timestep t. The scaling factor � and o↵set ' are hyperparameters;

� = 0.1, ' = 15 for the simulation experiments in Section 2.3.3, and � = 0.02, ' = 100 for

the real-robot experiments in Section 2.3.4. This ensures the dense reward stays between 0 and

1, with the dense reward values being closer to 1 when the robot trajectory is closer to the VLM-

generated waypoint trajectory. What distinguishes trajectories that stay close to the VLM-generated

trajectories and truly successful trajectories is the sparse reward. We set the final reward for each

timestep r = rsparse if rsparse = 1 else r = rdense.

2.3 Experimental Results & Analysis

2.3.1 Key Research Questions

Our experiments aim to answer the following questions:

1. Importance of Dense Rewards: Does our VLM-based dense reward formulation improve

the e�ciency of online RL? (Section 2.3.4)

2. Robustness of Demonstration Reductions: Is our autonomous RL system robust to fewer

in-domain demonstrations? (Section 2.3.5)

3. Robustness to Environment Perturbations: Is our closed-loop system more robust to

environment perturbations than methods using open-loop action primitives? (Section 2.3.6)

We study tasks in both simulation and on a real robot to answer these questions.
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Figure 2.4: Visualization of real-world tasks. Evaluation is conducted on four real-world tasks spanning

di↵erent manipulation types: Cloth Covering (deformables manipulation), Almond Sweeping (non-prehensile

manipulation), Spatula Pick-Place (functional grasping), and Cube Stacking (precise manipulation).

2.3.2 Experimental Setup

Tasks. In PyBullet simulation, we study a Bin-Sorting task [62, 139], where a WidowX 250 arm

needs to sort objects into the correct bin specified by the language instruction. On a physical

WidowX 250 robot arm, we study Cloth Covering, Almond Sweeping, Spatula Pick-Place, and Cube

Stacking (visualized in Figure 2.4). Our tasks span a range of complex skills involving manipulation

of deformables, non-prehensile manipulation, functional grasping of objects handles, and precise

grasping and placement of 3cm small cubes designed to challenge our system. Each of our tasks

consists of a forward component (e.g., uncovering the block from under the cloth) and backward

component (e.g., covering the block with the cloth), and therefore can be autonomously practiced

by alternating between these two task components.

Comparisons. To assess performance without any online fine-tuning, we compare KAGI to

language-conditioned behavior cloning and a pre-trained RL baseline, CalQL [90]. We also evaluate

RoboFuME [139], which fine-tunes the pre-trained RL policy online with sparse rewards derived

from a VLM success classifier (see Appendix A.2 for details on verifying successful reproduction of

RoboFuME). This comparison allows us to understand the benefits of the proposed dense rewards.
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Figure 2.5: Average success across 3 seeds on simulated Bin-Sorting. We evaluate each reward

formulation under: the standard number of demos (left), 2⇥ reduction (middle), and 5⇥ reduction (right).

Finally, we evaluate MOKA [30], which executes the trajectory defined by the VLM-generated

waypoints. This last comparison does not perform any additional learning or fine-tuning.

Datasets. All methods except for MOKA are pre-trained on a combination of trajectories se-

lected from the Bridge dataset [28, 126] and a set of in-domain demonstrations. The in-domain

demonstrations consist of 50 forward trajectories and 50 backward trajectories. Following Robo-

FuME [139], we additionally collect 20 failure trajectories, which are used to train the VLM-based

success classifier used by RoboFuME and KAGI. In Section 2.3.5, we test these methods on a 5⇥

reduction in the quantity of in-domain demonstrations.

Evaluation. In simulation and real-world evaluations, we roll out each forward task policy for

20 trials. For the real-world tasks, success is evaluated as follows. For Cube Covering, the entire

cube must be uncovered from the camera perspective shown in Figure 2.4; for Almond Sweeping,

all five almonds must reach the right side of the tray; for Spatula Pick-Place, the spatula must be

on the plate; for Cube Stacking, the yellow cube must be stable atop the red cube.

2.3.3 Simulation Experiments

We conduct a preliminary test of our dense reward formulation in a simulated Bin-Sorting task.

Following the experimental setup in RoboFuME [139], each approach is provided 10 forward and

backward demonstrations, 30 failure demonstrations, and 200 total demonstrations of other pick-

place tasks of diverse objects. In simulation, rewards are computed in 100⇥ 100 pixel image space.

We compare three reward formulations: dense waypoint-based only, sparse success-based only (Robo-

FuME), and dense + sparse (KAGI).

As shown in Figure 2.5, our reward formulation achieves higher success rates than

the sparse-only reward formulation. The dense-only reward formulation performs worse than

the other two. This indicates that both types of rewards are necessary for e�cient and successful

learning: while dense rewards are useful in shaping learned behaviors, sparse rewards are also crucial
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Task BC O✏ine RL RoboFuME KAGI (Ours)

Cloth Covering 35% 55% 80% 80%
Almond Sweeping 25% 45% 70% 80%
Spatula Pick-Place 30% 25% 45% 65%
Cube Stacking 10% 15% 25% 45%

Table 2.1: Success rates over 20 trials for each method on four real-world tasks. We compare

KAGI (fine-tuned for 30K steps) to o✏ine-only methods and RoboFuME (fine-tuned for 30K steps).

to distinguish truly successful trajectories. We further test our reward formulation succeeds with a

reduced number of demonstrations of the task. We test the e↵ect of a 2⇥ reduction in demonstrations

(10 forward and 10 backward demonstrations) and a 5⇥ reduction in demonstrations (4 forward and

4 backward demostrations). In Figure 2.5, we see that our reward formulation is robust to

these reductions in quantity of task demonstrations.

2.3.4 Real-World Fine-Tuning with Dense Rewards

In our real-world experiments, we evaluate RoboFuME and KAGI after fine-tuning for 30K online

environment training steps, with rewards computed in 640 ⇥ 480 pixel image space. The results

are shown in Table 2.1. For each task, RoboFuME fine-tuning improves over the o✏ine RL policies

by 10-25%, which is consistent with the performance of RoboFuME in Yang et al. [2024b] and

confirms that further online fine-tuning is beneficial. Notably, we see lower success rates on Cube

Stacking, which requires high precision and is considerably harder than all the pick-place tasks in

RoboFuME [139]. With KAGI, task performance is similar or further increases across the board.

While the increase in success rates achieved by KAGI over RoboFuME is modest using the

standard number of in-domain demosntrations for pre-training, we notice qualitatively di↵erent

behaviors learned by each policy. As an example, Figure 2.6 shows a representative trajectory

demonstrating policy performance for Spatula Pick-Place. The policy fine-tuned with RoboFuME,

while fairly successful, commonly demonstrated the behavior of dropping the spatula onto the plate

from a height, rather than lowering and placing the spatula like the demonstrations. The robot

gripper also continues moving rightward rather than staying above the placement point, indicating

some coincidental successes. In comparison, KAGI’s policy fine-tuned with dense shaping rewards

showed behavior that matched the demonstrations more closely. For more examples comparing

qualitative behavior across tasks, please see the project website.

2.3.5 Robustness to Reduced In-Domain Demonstrations

Both RoboFuME and KAGI pre-train on a set of 100 in-domain demonstrations for each new

task, which is a non-trivial cost. We investigate the e↵ect of reducing the number of in-domain

https://sites.google.com/view/affordance-guided-rl
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Figure 2.6: Qualitative examples of policies fine-tuned with RoboFuME (top) and KAGI (bot-

tom). RoboFuME drops the spatula from a higher height and unnecessarily moves right after. KAGI places

the spatula down more gently and moves to a neutral position after.

Task O✏ine RL RoboFuME KAGI (Ours)

Cloth Covering 45% 50% 75%
Almond Sweeping 40% 55% 80%
Spatula Pick-Place 10% 30% 60%
Cube Stacking 5% 15% 40%

Table 2.2: Success rates over 20 trials for each method with 5⇥ fewer in-domain demonstrations.

KAGI achieves similar performance to the setting with the standard amount of demonstrations, while

RoboFuME performance drops with fewer demonstrations.

demonstrations for both methods. We pre-train an o✏ine RL policy on 5⇥ fewer than the standard

quantity of in-domain demonstrations (10 forward tasks, 10 backward tasks, and 4 failures). We

then fine-tune this policy online for 45K steps with RoboFuME and with KAGI. The results are

shown in Table 2.2.

Impact of reduced demos on the policy. Unsurprisingly, the o✏ine RL policy performs

worse than when trained on the standard quantity of in-domain demonstrations. Fine-tuning for

45K steps using RoboFuME somewhat improves success rate over o✏ine RL policies, but we see a

significant gap with 5⇥ less demos compared to its original performance with the standard number

of demonstrations. Therefore, the performance of RoboFuME depends heavily on the amount of

in-domain demonstrations provided. However, across all tasks, KAGI reaches close to its original

performance even with this reduction. This small drop indicates that, even with fewer in-domain

demonstrations, KAGI can recover comparable performance with more fine-tuning, as

it uses dense shaping rewards to guide its behavior. Since KAGI can tolerate fewer task-specific

demonstrations, it can be applied to new tasks more easily, with a smaller data burden.
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Task
MOKA without
perturbations

MOKA with
perturbations KAGI (Ours)

Cloth Covering 90% 50% 80%
Almond Sweeping 100% 65% 80%
Spatula Pick-Place 70% 30% 65%
Cube Stacking 60% 15% 45%

Table 2.3: Success rate of MOKA [30] without perturbations of the objects and with slight

perturbations to the object positions. With perturbations, MOKA’s performance drops significantly.

Impact of reduced demos on the success classifier. The reduction in in-domain data cru-

cially impacts the behavior of the VLM-based (MiniGPT-4) success classifier used by both Robo-

FuME andKAGI. We observed the sparse reward predictions of MiniGPT-4 were significantly worse,

indicating fine-tuning the success predictor is reliant on substantial high-quality in-domain data to

generate accurate sparse rewards. To mitigate this issue and eliminate the confounding factor of

inaccurate sparse rewards, we modify RoboFuME’s [139] original sparse reward computation: the

reward predictor was provided four task-completion prompts as input (e.g., ‘Is the spatula on the

plate?’, ‘Has the spatula been moved to the plate?’, etc.), and must reach a consensus across all

prompts to generate a sparse reward of 1. This reduces the number of false positives, which RL al-

gorithms often exploit. The decreased accuracy of the sparse reward predictor is a key factor behind

the minimal improvements of RoboFuME over o✏ine RL, revealing another source of fragility in the

system and underscoring the importance of dense shaping rewards for data-e�cient fine-tuning.

2.3.6 Importance of Online Fine-tuning

Since the VLM prompting component of KAGI is inspired by MOKA [30], we additionally evaluate

MOKA to understand if online fine-tuning o↵ers any advantages. MOKA [30] leverages GPT-4V

to predict a↵ordance keypoints and plan a sequence of action primitives (e.g., ‘lift’, ‘reach grasp’,

‘grasp’) to directly execute by computing the actions required to reach each point. We evaluate two

versions of MOKA: the first with precise resets that closely match the inputs to the VLM and no

environmental perturbations, and the second with slight perturbations to these initial conditions

during policy rollouts, that is representative of environment resets after backward policy rollouts.

The comparison seeks to highlight the benefits of closed-loop RL policies over open-loop primitives.

In Table 2.3, we see that MOKA with precise resets succeeds between 60% to 100% of the time

depending on the task, which actually outperforms KAGI. However, without these precise resets,

the performance of MOKA drops noticeably, as MOKA uses pre-defined motion primitives that

are not robust to even slight environment perturbations, since actions are computed directly with

respect to specific VLM-generated keypoints on the objects.
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However, KAGI can recover most of this performance loss with online fine-tuning using VLM-

generated waypoint trajectories. KAGI leverages the benefits of closed-loop systems that are more

generalizable, robust to environment changes, and exhibit retry behavior, as opposed to open-loop

systems that use hand-designed action primitives. This makes KAGI more suitable for the au-

tonomous RL paradigm, which involves potentially imperfect policy rollouts on a real robot.

2.4 Discussion

In this work, we present KAGI, a method for facilitating autonomous improvements of policies pre-

trained on diverse human teleoperated data using shaping rewards generated by VLMs. We leverage

a↵ordance keypoints and waypoints extracted zero-shot from VLMs as dense rewards for online RL,

enabling robots to learn autonomously through interaction and self-practice. We highlight three key

findings for making fine-tuning of pre-trained multi-task policies faster and more data-e�cient:

1. Dense shaping rewards extracted zero-shot from VLMs can help speed up online

RL. Providing dense shaping rewards that are easily generated from VLMs can facilitate

generalization to new tasks where relying only on sparse rewards is less e�cient.

2. Dense shaping rewards improve robustness to fewer in-domain demonstrations.

Leveraging both dense and sparse rewards improves autonomous learning, with better robust-

ness to reduced in-domain demonstrations than sparse rewards alone.

3. Closed-loop RL systems are more robust to environmental perturbations than

methods using open-loop action primitives. While action primitives may be easier to

engineer than policy training, handling dynamic changes during policy rollouts is challenging.

Overall, our reward formulation can modify existing fine-tuning methods, thereby making the

process of fine-tuning policies pre-trained on diverse data more robust and data-e�cient. Our frame-

work is also agnostic to the VLM that is used for keypoint and waypoint generation, and theoretically

should be substitutable with future VLMs that are developed (for a qualitative analysis of VLM

quality as of late 2024, see Appendix A.1). Our work demonstrates the benefits of VLM-based dense

shaping rewards, and opens up new exploration avenues for harnessing the generalization capabilities

of VLMs to improve robustness of robot learning systems.

Our experiments present several insights into the opportunities and challenges of autonomous RL

pipelines for scalable robot learning. Approaches using only sparse rewards for online fine-tuning are

slower to learn how to complete tasks, and approaches relying on in-domain demonstrations with low

multimodality are much more brittle. To address this, we leverage mark-based visual prompting to

improve generalization capabilities of robots equipped with RL. In service of the broader discussion

around scaling robot learning without scaling human e↵ort, we analyze three findings from this work:
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2.4.1 Brittleness of Real-World RL with Images

Reproducing RoboFuME [139] (see Appendix A.2) was initially a struggle as the system is fairly

brittle. RoboFuME [139] requires 120 in-domain demonstrations per task to be collected, and

trajectories must have very low multimodality. Collecting >100 demonstrations per task is not

practically feasible, especially given the relative simplicity of the tasks in comparison to what we

ideally want robotic systems to be capable of doing. Furthermore, requiring low multimodality across

all demonstrations is challenging if using methods such as crowdsourcing [87] or data collection by

users who are unfamiliar with robot teleoperation. While the objective of this work was to explore

an e�cient pre-train fine-tune paradigm for learning from diverse data, one could argue that a more

e�cient approach for the single-task setting is using the 120 demonstrations to train an imitation

learning policy (e.g., di↵usion policy [16]) without requiring highly unimodal trajectories, potentially

reaching similar task performance as RoboFuME [139] without pre-training on Bridge data.

RoboFuME [139] also requires very similar environmental conditions (e.g. lighting, camera an-

gle, background) between demonstration collection and during test-time. Anecdotally, even slight

lighting changes (e.g., at a di↵erent time of day from demonstration collection) could be highly

damaging to the policy performance, thus our environment was set up away from a window in arti-

ficially lit room. This is a consequence of using RGB images as the observation modality for policy

training. Realistically, this system cannot be implemented in a highly dynamic environment (e.g.,

manufacturing and warehouse settings), where lighting and background is constantly changing.

Consequently, KAGI, which augments RoboFuME with dense rewards, inherited some of these

limitations. Our work demonstrated that with dense rewards from VLMs, we could reduce the

number of in-domain demonstrations to 24 in-domain demonstrations, which is much better in terms

of scalability. It refutes the above argument of using an IL method instead, as most IL policies would

not be successful with so few demonstrations and also su↵er from their own limitations which we

explore elsewhere in this thesis (Sections 3.1.1, 3.1.2). However, the brittleness to environmental

changes between demonstration collection and test-time is still a crucial limitation. In the next

work, we explore (1) whether we can further reduce the number of demonstrations provided, and (2)

whether alternative visual inputs could enable better policy robustness to environmental changes.

2.4.2 Feasibility of Real-World RL

While KAGI is an autonomous RL system, it is worth considering the level of human supervision

that is required. Autonomous RL indeed requires less supervision than, for instance, an IL or

traditional o✏ine RL pipeline that requires human supervision for collecting on the order of 100-1000

demonstrations (which can take hours), plus additional supervision to perform environment resets

at test-time. This is because of the alternate self-practicing of the forward and backward policy,

which is an improvement from traditional approaches and has the additional benefit of enabling

robots to learn from autonomously collected data. However, even in our regime, the human still
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needs to collect 24 demonstrations per task (which takes ⇠30 minutes if done e�ciently). This level

of human supervision is still non-trivial, especially considering the relative simplicity of the task. In

practice, the human also needs to periodically check on the autonomous RL system, which takes a

wall clock time of 3-4 hours. An ideal, scalable system would require just minutes of human input

to train a performant policy, and in the next work we explore a framework that trains RL policies in

simulation to bring human e↵ort down to <10 minutes for complex, dexterous manipulation tasks.

Assessing the feasibility of real-world RL for fine-tuning pre-trained policies also leads to another

key insight: real world fine-tuning with RL should only be used as a last-mile solution. That is to say,

the base pre-trained policy should be generally very performant for real-world fine-tuning to yield

policies capable of real-world deployment in a reasonable amount of time. A significant contributor to

KAGI’s autonomous RL pipeline taking 3-4 hours to reach a reasonable success rate was that o✏ine

RL policies pre-trained on diverse data performed very poorly (5-40% in the reduced demonstration

setting), leaving a large gap for online RL fine-tuning to fill. Realistically, for a robotics system that

can be deployed at scale in real-world environments, real-world RL fine-tuning should elevate the

performance of a pre-trained policy that succeeds ⇠70-90% of the time to ⇠100%. Further research

into pre-training policies by improving the e�cacy of o✏ine RL [66, 90] or more recently, robotic

foundation models [53, 54, 56, 94, 95], can address this limitation. We explore this insight further

after presenting the next work, but is an important takeaway from this work worth mentioning here.

2.4.3 Scalability to More Complex Scenarios

Related to the feasibility of real-world RL, the entire autonomous RL fine-tuning pipeline was

generally quite time-consuming for the four tasks in Figure 2.4, which are relatively simple tasks

performed by a robot with a parallel-jaw gripper. It is challenging to envision this exact framework

scaling up to more complex scenarios such as dexterous manipulation or mobile manipulation, though

the key takeaways from this work still apply. Works like HuDOR [36] attempt real-world RL for

dexterous manipulation using object-centric rewards via object pixel tracking. However, they use

a relatively static hand and assume minimal occlusion of the object during interaction to enable

pixel-based object-centric rewards, which can be fairly restrictive assumptions. Using RGB images

as input also makes the system subject to the brittleness problems discussed above in Section 2.4.1,

in terms of environmental changes and occlusion of objects. Finally, their system still takes ⇠1

hour of online fine-tuning, which is much better than KAGI but still has room for improvement,

especially considering the ideal robotics system scales to many more tasks and operates over a larger

action space. In the next work, we investigate a method applied to complex dexterous manipulation

and trains policies operating over a full arm-and-hand action space, by similarly leveraging object-

centric rewards for RL. We also explore training RL policies in domain-randomized, parallelizable

simulation environments in light of challenges in real-world RL.
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Sim-to-Real Reinforcement

Learning from One Human

Demonstration

We now turn our focus to the dexterous manipulation setting involving multi-fingered robotic hands,

rather than parallel-jaw grippers. Human-like dexterous hands have the potential to significantly

advance robotic manipulation [14, 36, 102]. However, the complexity of dexterous robot hands in-

troduces substantial challenges for many existing robot learning methods. For example, imitation

learning (IL) from human demonstrations has shown success using simpler end-e↵ectors with large

amounts of training data [3, 5, 19, 46, 56], but collecting high-quality demonstrations for dexter-

ous hands is far more di�cult. Capturing high-quality 3D human hand motion typically relies on

wearable sensors and teleoperation systems [11, 128], which are expensive and di�cult to scale.

In contrast, videos of humans interacting with objects using their own hands are inexpensive to

collect, o↵ering a scalable alternative to traditional demonstration collection. However, leveraging

human videos directly for robotic IL is challenging as they lack explicit robot action labels [141].

One common approach to derive robot action labels is by obtaining per-timestep human hand pose

estimates and converting them to robot actions via fingertip retargeting and inverse kinematics

(IK) [11, 128]. However, this approach is often unreliable as hand pose reconstruction methods [97]

are susceptible to occlusion and sensor noise. Even with perfect pose estimates, this simple retarget-

ing strategy often results in suboptimal robot trajectories due to morphological di↵erences between

the robot and human. These challenges are particularly punishing for contact-rich, dexterous ma-

nipulation [10, 76, 93]. Existing IL methods are ill-equipped to address this issue as they rely on

accurate correspondences between demonstrated and learned behaviors.

Reinforcement learning (RL) o↵ers a promising alternative to overcome these limitations by

19
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Human Sim Robot

RGB-D Video Demo

Pre-Manip. 
Hand Pose

Object Pose 
Trajectory

Digital Twin with
Domain Randomization

RL Policy Training Zero-Shot Sim2Real

Kuka Arm with 
Allegro Hand

Figure 3.1: Our Framework. Human2Sim2Robot learns dexterous manipulation policies from
one human RGB-D video using object pose trajectories and pre-manipulation poses. These policies
are trained with RL in simulation and transfer zero-shot to a real robot.

enabling robots to directly learn manipulation tasks using their own embodiment. However, RL

has several limitations such as tedious, task-specific reward engineering and unfavorable sample

complexity, making real-world policy training infeasible [121, 148].

In this paper, we propose Human2Sim2Robot, a real-to-sim-to-real RL framework that ad-

dresses the limitations of existing methods and combines the best of both worlds: it only requires

a single human RGB-D video demonstration and does not require any task-specific reward engi-

neering. Crucially, we found that high-fidelity 3D human motion data is not necessary to learn

robust dexterous manipulation policies. Instead, training an RL dexterous manipulation policy only

requires two task-specific components that can be reliably extracted from the human video: (1) the

object 6D pose trajectory, and (2) a single pre-manipulation hand pose.

We use (1) to define an embodiment-agnostic, object-centric reward that specifies the desired

task, and (2) to provide advantageous initialization for RL training and facilitate more e�cient

exploration. Formalizing an expert demonstration with these two components facilitates RL policy

training with no task-specific reward tuning. Instead of directly learning state-action mappings, we

use the demonstration for task specification and guidance, encouraging human-like behavior while

allowing deviations when the human strategy is unsuitable for the robot’s embodiment. This enables

Human2Sim2Robot policies to achieve zero-shot sim-to-real transfer on a real-world dexterous

robot, without requiring wearables, teleoperation, or large-scale data collection.

To the best of our knowledge, Human2Sim2Robot is the first system that learns a robust real-

world dexterous manipulation policy from only one human RGB-D video demonstration, bridging

the human-robot embodiment gap across grasping, non-prehensile manipulation, and complex multi-

step tasks. We achieve this with just a few minutes of human e↵ort end-to-end, from demonstration

collection to digital twin construction. Our extensive ablation studies demonstrate the importance
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of our system’s design decisions; while individual components have precedents, these works are often

limited to simulation [102, 116], are not reactive closed-loop policies [14, 52, 140], require significantly

more demonstrations [63, 102, 116, 144], or only perform prehensile manipulation [52, 102, 116, 140].

Human2Sim2Robot policies can execute diverse real-world dexterous manipulation tasks, such

as pouring from a pitcher, pivoting a box against a wall, and inserting a plate into a dishrack, without

any task-specific reward tuning. In the single human demo regime, our method outperforms object-

aware trajectory replay by >55% and imitation learning by >68% across all real-world tasks.

3.1 Related Work

3.1.1 Visuomotor Imitation Learning for Robotics

Visuomotor IL for robotic manipulation has shown success in learning from a large number of

expert demonstrations [3, 5, 16, 46, 56, 146] collected through teleoperation or specialized wearable

equipment [17, 69, 128], which makes scaling data collection e↵orts expensive. In contrast, human

videos are inexpensive and more intuitive to collect. Per-timestep human hand pose estimates can

then be converted into robot action labels through IK-based retargeting [11, 128]. However, hand

pose estimation noise and the human-robot embodiment gap often result in infeasible or suboptimal

IK solutions for the robot embodiment, a challenge for visuomotor IL methods that directly rely on

high-quality action labels. While human demonstrations provide useful guiding strategies for task

completion, certain actions may not be suitable for robots given substantial embodiment di↵erences.

Human2Sim2Robot performs RL in simulation guided by a single human video demonstration. It

encourages human-like behavior when beneficial while allowing deviations when the human strategy

is unsuitable for the robot’s embodiment.

3.1.2 One-Shot Imitation Learning (OSIL)

OSIL methods parallel our approach as a single demonstration is provided. Past work has per-

formed object-aware retargeting to transfer the demonstrated trajectory to novel scenes [37, 67,

125], leveraged object segmentation and visual servoing to adapt the single demonstration to a new

scene [123], or augmented teleoperated demonstrations by retargeting and success filtering in a dig-

ital twin simulation [48]. Though more data-e�cient than visuomotor IL policies, OSIL methods

su↵er from limited generalization beyond the demonstrated actions. Simply replaying modifications

of the single demonstration is unlikely to succeed in contact-rich settings requiring closed-loop, re-

active behavior (e.g., variations in contact interactions or perturbations during policy rollout). Our

insight is that using the human video to provide task specification and guidance for RL leverages

this data source for robot learning more e↵ectively. This allows robots to develop e↵ective strategies

with their own embodiment, rather than rigidly imitating human behaviors.
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3.1.3 Reinforcement Learning for Robotics

RL enables robots to learn complex behaviors through interaction with the environment. Real-

world RL is often impractical due to slow training, safety concerns, manual environment resets,

and di�cult reward tuning [121, 148]. Sim-to-real RL circumvents these challenges and has led to

breakthroughs in other robotic domains [15, 51, 83, 85, 101]. However, it remains underexplored

for full arm-and-hand dexterous manipulation, as most prior work relies on simulation with non-

physical, floating-hand models [13, 103, 127, 136]. Among works that have demonstrated sim-to-real

transfer, Torne et al. [2024] use demo-augmented RL, which requires many demonstrations collected

with the same robot embodiment. Chen et al. [2024c] learn residual actions on top of an open-loop

base trajectory learned from human data, but the resulting policy lacks the flexibility for error

recovery and struggles under a large embodiment gap. In contrast, Human2Sim2Robot trains

robust dexterous RL policies in simulation from minimal human input over a full arm-and-hand

action space, which successfully transfer to the real world. Other works use inverse RL on human

videos [63, 144], but inferring a reward function typically requires ⇠100 demos. In contrast, our

explicit object-centric reward works with a single demo.

Prior works corroborate the observation that pre-grasp poses can accelerate policy learning and

result in human-like grasps [18, 22, 74]. However, these methods only focus on using pre-grasps from

very similar embodiments for grasping tasks in simulation. We focus on training RL policies that

transfer to the real world, overcome the human-robot embodiment gap, and perform prehensile and

non-prehensile manipulation. These policies can be deployed zero-shot in real-world environments,

as we build on recent work in sim-to-real transfer [72, 121].

3.2 Methodology
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Figure 3.2: Human Demo Processing. (1)
The object pose trajectory defines an object-
centric, embodiment-agnostic reward. (2) The
pre-manipulation hand pose provides advanta-
geous initialization for RL training.

We present Human2Sim2Robot, a real-to-

sim-to-real RL framework for learning robust,

dexterous manipulation policies from a single

human-hand RGB-D video demonstration. Fig-

ure 3.1 shows an overview of our framework, and

the following sections detail the key design de-

cisions of our framework.

3.2.1 Real-to-Sim & Human Demo

We first create a digital twin of the robot’s real-

world environment and the target object to act

as a policy training ground in simulation. The
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construction of the digital twin only takes ⇠10 minutes of human e↵ort (see Appendix B.1 for a

detailed time breakdown). We use o↵-the-shelf mobile applications [58, 64] to capture a high-fidelity

object mesh O and scene mesh S.

Next, we record a single monocular RGB-D video demonstration {It}Tt=1 using a camera with

known intrinsics and extrinsics, where each frame It 2 RH⇥W⇥4 contains RGB-D data, and T is the

total number of timesteps. Figure 3.2 visualizes how we process the human demonstration to obtain

(1) an object pose target trajectory {T target
t }

T
t=1, and (2) a human hand pose trajectory represented

as MANO [107] parameters {(✓t,�t)}
T
t=1. At each timestep t, T target

t 2 SE(3) is the object pose

from the demonstration’s object trajectory, ✓t 2 R48 is the MANO hand pose parameter, and

�t 2 R10 is the MANO hand shape parameter. In our system, we extract the object pose trajectory

using FoundationPose [132], an open-source object pose detection model, which requires the scanned

object mesh O and per-timestep object masks generated using Segment Anything Model 2 (SAM

2) [105], an open-source segmentation model. We extract per-timestep human hand poses using

HaMeR [97], an open-source hand pose detection model, which takes RGB images as input. Using

our depth images, we perform ICP registration to align the hand point clouds for obtaining accurate

hand poses (see Appendix B.1 for details on aligning HaMeR predictions with depth images).

We then determine the pre-manipulation hand pose at timestep ⌧ = t0 � to↵set, where t0 is the

first timestep in which the object’s velocity exceeds a threshold vmin = 5cm/s, and to↵set = 10

represents a fixed number of timesteps prior to the object’s motion. We use ✓⌧ and �⌧ to compute

fingertip positions and middle finger base knuckle pose as the human pre-manipulation hand pose.

(a) (b) (c) 

Figure 3.3: Human to Robot Hand Retargeting.
(a) Estimated MANO hand pose. Middle knuckle: red.
Fingertips: pink, green, blue, yellow. (b) IK Step 1
(Arm): Align middle knuckle. (c) IK Step 2 (Hand):
Align fingertips.

Lastly, we retarget the human pre-

manipulation hand pose to a robot hand

pose through a two-step IK procedure us-

ing cuRobo [118]. Figure 3.3 visualizes how

we perform human-to-robot hand retarget-

ing. In Step 1, the robot arm’s joint an-

gles are adjusted to align the base position

and orientation of the robot hand’s mid-

dle knuckle with that of the human hand

(with a small o↵set, see Appendix B.2 for

details). In Step 2, the robot hand’s joint

angles are adjusted to align the robot’s fingertip positions with the corresponding human fingertip

positions. This generates a pre-manipulation robot hand pose (Twrist
, qhand) for the object pose

represented as T target
⌧ , where Twrist

2 SE(3) is the robot wrist pose, and qhand
2 RNhand-joints

is the

robot hand joint configuration. This faithfully retargets the human pre-manipulation hand pose,

while maintaining kinematic feasibility and alignment between the human and robot hand.
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The object pose trajectory provides task specification by defining an object-centric trajectory-

tracking reward for policy training. The pre-manipulation pose o↵ers task guidance by defining a

good state initialization for exploration [22]. The pre-manipulation pose retargeting does not need

to be extremely precise, as it is just a prior to facilitate exploration. Together, these abstractions

guide RL policy training in simulation via reward guidance and advantageous state initializations.

3.2.2 Simulation-based Policy Learning

We create a training environment in the IsaacGym simulator [82] that matches the real-world envi-

ronment, consisting of the robot, scene mesh S, and object mesh O, which takes only ⇠10 minutes of

human e↵ort. We then train a policy using Proximal Policy Optimization [108] which outputs robot

actions that move the object along the target trajectory, guided by the provided pre-manipulation

pose. We emphasize that we primarily care about how the object moves, rather than imitating the

actions of the human demonstrator; the pre-manipulation pose serves as a rough prior, but the policy

will learn to use the robot embodiment to achieve the desired object motion.

The reward given at timestep t is an object-tracking reward, rt = r
obj
t defined as

r
obj
t = exp

�
�↵ d(T target

⌧+t ,T obj
t )

�
, where d(T1,T2) =

NanchorX

i=1

��T1ki � T2ki

��, (3.1)

Target Trajectory

Actual Trajectory

Figure 3.4: Object Pose Tracking Reward. The
agent is rewarded for minimizing distance between cur-
rent pose and target object pose d(T target

⌧+t ,T obj
t ) using

anchor points ki.

where d is the relative pose distance

function and ↵ = 10. For most objects,

we select N
anchor = 3, with k1 = [L, 0, 0],

k2 = [0, L, 0], and k3 = [0, 0, L] in the

local object frame, where L = 0.2m is a

distance parameter for orientation. Fig-

ure 3.4 visualizes the object pose tracking

reward. This formulation integrates po-

sition and orientation naturally: larger L

emphasizes orientation by placing anchor

points farther from the object’s origin. See

Appendix B.3 for reward function details.

The observation at timestep t is ot = [qt, q̇t,X
fingertips
t ,xpalm

t ,Xobj
t ,Xtarget

⌧+t ], where qt, q̇t 2

RN joints

are the robot’s joint angles and velocities, Xfingertips
t 2 RN fingers⇥3 are the fingertip positions,

xpalm
t 2 R3 is the palm position, and Xobj

t ,Xtarget
⌧+t 2 RNanchor⇥3 are anchor point positions for the

object and target poses. N joints
, N

fingers
2 N are the number of robot joints and fingers, respectively.

The action at timestep t is at = [xpalm-target
t , rpalm-target

t ,xpca-target
t ], where xpalm-target

t 2 R3 is

the target palm center position, rpalm-target
t 2 R3 is the target palm orientation expressed as Euler
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Figure 3.5: Inference-Time Diagram. Our RL policy takes current object 6D pose and robot
proprioception as input. It outputs an action consisting of a palm position and orientation target
that is sent to a geometric fabric controller [72], which generates joint PD targets.

angles, and xpca-target
t 2 RNpca is the vector of target PCA values used to control the hand joints,

where Npca = 5 is the number of principal components. We use a geometric fabric controller and

PCA-based hand action space, enabling human-like hand motions (see [72] for details).

We use an initial state distribution, guided by the human pre-manipulation hand pose, to simplify

exploration and bias the policy toward human-like behavior. We construct this distribution by

sampling object pose around the trajectory’s initial pose, then set the robot configuration to match

the pre-manipulation hand pose with slight perturbation (see Appendix B.4). Given this perturbed

pose, we compute a feasible arm joint configuration with IK 1. The environment is reset if the object

is too far from the current target d(T target
⌧+t ,T obj

t ) > Dmax, the robot palm is too far from the object

||xpalm
t � xobj

t || > Dmax, or the target trajectory is complete ⌧ + t > T , where Dmax = 0.25m.

Real-world dynamics parameters (e.g., object mass, inertia, friction) are often unknown. To

handle this uncertainty, we use domain randomization during simulation, enabling the policy to adapt

to diverse dynamics and transfer to the real world. We train an LSTM-based policy that leverages a

history of observations to handle this partial observability and noisy data. We train the policy using

object poses instead of images to accelerate training and enhance robustness to visual variation. To

improve resilience to pose errors and calibration noise, we add noise to pose observations. We apply

random object forces to increase robustness to unexpected contacts, disturbances, and dynamics

variation, enabling zero-shot sim-to-real transfer. See Appendix B.5 for training details.

3.2.3 Sim-to-Real Policy Transfer

After training, we deploy the policy on a real robot without additional fine-tuning (i.e., zero-shot).

Figure 3.5 illustrates the control pipeline at deployment, highlighting the inputs and outputs of our

1We use cuRobo [118] to perform parallelized, collision-free IK to ensure RL training is not bottlenecked by IK
computations
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Hardware Setup Digital Twin

Figure 3.6: Hardware Setup & Digital Twin. The hardware setup includes an Allegro hand
mounted on a KUKA LBR iiwa 14 arm with a ZED 1 stereo camera mounted on the table (images
from the camera’s perspective). Experiments are conducted in a tabletop setting with a static box,
saucepan, and dishrack, involving manipulation tasks with three objects: snackbox, pitcher, and
plate. The right image illustrates our digital twin.

policy at test time. We track object 6D poses at 30Hz using FoundationPose [132] (for details,

see Appendix B.6). The RL policy processes real-time observations and outputs actions at 15Hz,

which are then passed to a geometric fabric controller [72] running at 60Hz. Finally, this controller

produces robot joint PD targets, which are executed by a low-level PD controller at 200Hz.

3.3 Experimental Results & Analysis

3.3.1 Key Research Questions

Our experiments aim to answer the following questions:

1. Importance of Embodiment-Specific RL: Do RL policies trained viaHuman2Sim2Robot

outperform baselines on dexterous manipulation tasks? (Sec 3.3.3)

2. Importance of Object Pose Trajectory: How e↵ective is using the object pose trajectory

from a human demonstration as a dense reward for RL policy training, compared to other

reward formulations? (Sec 3.3.4)

3. Importance of Pre-Manipulation Pose Initialization: Does a pre-manipulation hand

pose from a human demonstration provide more e↵ective initialization for learning manipula-

tion skills than generic initializations? (Sec 3.3.5)

4. Su�ciency of Pre-Manipulation Hand Pose: How e↵ective is a single pre-manipulation

pose in guiding RL policy training, compared to alternatives that require full human hand

trajectories? (Sec 3.3.6)

We evaluate Human2Sim2Robot in simulation and on a real robot across a diverse set of tasks

and objects to answer these questions.
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3.3.2 Experimental Setup

Hardware Setup. Our robot consists of a 16-DoF dexterous Allegro hand mounted on a 7-DoF

KUKA LBR iiwa 14 arm. We used a ZED 1 stereo camera mounted on the table for recording both

the human demonstration and real-time object pose estimation for policy input at test time. Our

experiments are conducted in a tabletop setting with three static objects: a box, a large saucepan

placed atop the box, and a dishrack. The tabletop and its static objects are captured in scene scan

S. Figure 3.6 shows our hardware setup and objects, as well as the digital twin.

Snackbox Push

Snackbox Pivot

Pitcher Pour

Plate Push

Plate Pivot

Plate Rack

Figure 3.7: Task Visualization. Our real-world
tasks span grasping, non-prehensile manipulation,
and extrinsic manipulation. We show the human
demo and the robot behavior side-by-side for each
task. We also include three multi-step tasks that
compose multiple skill types listed above.

Tasks & Objects. We perform experi-

ments with three objects: snackbox, pitcher,

and plate. Figure 3.7 visualizes our tasks us-

ing these objects, which include grasping, non-

prehensile manipulation, and extrinsic manip-

ulation. We also explore multi-step tasks that

compose sequences of these skills, such as piv-

oting the plate, lifting it, and placing it in a

dishrack (see Appendix B.7 for details).

Simulation Ablation Setup. For our

ablation experiments, we evaluate all methods

in simulation on the plate-pivot-lift-rack

task, which is our most complex multi-step task.

We train policies with three random seeds for

all simulation results, and we compare them on

their speed and stability of learning, their final

achieved reward, and their qualitative behavior.

3.3.3 Importance of Embodiment-Specific RL

In real-world experiments, we compareHuman2Sim2Robot policies to non-RL baselines to evaluate

the impact of closed-loop, embodiment-specific RL. These baselines require robot action labels for the

entire task, which are obtained by performing hand pose estimation and human-to-robot retargeting

for every frame of the video.

We evaluate against three baselines across seven real-world tasks (see Appendix B.8 for baseline

details): (1) Replay: Replays the retargeted trajectory open-loop by setting PD targets to these

positions; (2)Object-Aware (OA) Replay: LikeReplay, but warps the trajectory by the relative

transform between initial object pose in the human demo and at test time (similar to [125, 67]); and

(3) Behavior Cloning (BC): Trains a closed-loop di↵usion policy [16] on 30 demos (same number

as in [36]), generated from our one demo by sampling object poses (same range as our RL training),

performing OA Replay, and using these trajectories as demo data.
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Figure 3.8: Real-World Success Rates. Human2Sim2Robot policies outperform Replay by
67%, Object-Aware (OA) Replay by 55%, and Behavior Cloning (BC) by 68% across all tasks.

For each task, we evaluate the success rate of the task-specific RL policy and the baselines across

10 policy rollouts (Figure 3.8). In all tasks, Human2Sim2Robot policies substantially outperform

the baselines. Replay was unsuccessful on most tasks, but performed well on tasks requiring low

precision like snackbox-pivot. OA Replay performed better than Replay as it accounts for

randomizations in initial pose, but still had many failures due to (a) hand pose estimation errors,

(b) morphological di↵erences between the robot and human, and (c) non-reactive open-loop control.

BC performed similarly to Replay, which can be attributed to the low-quality dataset (actions

computed from noisy hand pose estimations) and compounding errors throughout policy rollouts.

While retargeted robot demos can succeed on simpler tasks, they often fail on harder multi-step

tasks. Ours does not simply imitate human behaviors, but adapts the behavior for the robot

embodiment, resulting in much higher success rates across all tasks.

Qualitatively, for more intricate tasks like plate-pivot-lift-rack, small di↵erences in the

pre-manipulation hand pose can result in very di↵erent learned strategies due to the di↵erences in

human and robot morphologies. While the human hand used the pinky and ring fingers to lift the

plate before transitioning to a grasp, the Allegro hand, which is much larger, used its ring finger to

pivot the plate and clipped it between the middle and index finger once the plate was o↵ the table

(see Figure 3.9). This further underscores our hypothesis that significant morphological di↵erences

may lead to strategies that are guided by the human motion but ultimately converge on a di↵erent

strategy that is more suitable for the robot’s embodiment after learning through trial-and-error.

Regarding Human2Sim2Robot failure modes, failures typically arose from converging on poli-

cies that exploited simulation inaccuracies or from significant pose estimation error from occlusion.

Examples of simulation inaccuracies include imperfect friction modeling of the tabletop and static

objects, such that policies converged on behavior that leveraged these inaccurate parameters. The

most challenging task was plate-pivot-lift-rack as it required high-precision object handling:

the plate is very thin, and is hard to manipulate and slips out of the large Allegro hand easily.
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Figure 3.9: Plate Pivot Lift Rack. Robot converges on a strategy guided by the human demon-
stration, but adapted to its morphological di↵erences. See our website for more qualitative videos.

Figure 3.10: Object Pose Tracking Reward Ablation. Reward curves comparing di↵erent object
rewards. Ours achieves the highest reward with fewer environment steps compared to ablations that
use much sparser reward formulations.

3.3.4 Importance of the Object Pose Trajectory

We run ablation experiments in simulation to study the importance of the object pose tracking

reward, comparing against: (1) Fixed Target: In r
obj
t (Eq. 3.1), we replace the current target

object pose T target
⌧+t with a final one T target

T ; (2) Interpolated Target: In r
obj
t (Eq. 3.1), we re-

place the current target pose T target
⌧+t with an interpolated pose between the initial and final tar-

get pose: interp
�
T target
⌧ ,T target

T , t/(T � ⌧)
�
, where interp : SE(3) ⇥ SE(3) ⇥ [0, 1] ! SE(3) lin-

early interpolates position and uses slerp for orientation; (3) Downsampled Trajectory: In r
obj
t

(Eq. 3.1), we replace the current target object pose T target
⌧+t with the downsampled pose T target

⌧+tdown
,

where tdown = bt/Dc ·D and D is the downsampling factor. This reduces the temporal resolution

of the human demonstration trajectory into a series of key poses.

Figure 3.10 shows that Human2Sim2Robot achieves a substantially higher average reward than

the other methods. The plate lying flat on the table is too large to be directly grasped, therefore

the optimal strategy is to use extrinsic manipulation leveraging the wall to pivot the plate into

https://human2sim2robot.github.io/
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Figure 3.11: Pre-Manipulation Hand Pose Ablations. Reward curves comparing di↵erent
initialization strategies. Ours leverages a good pregrasp close to the object as a prior that improves
exploration e�ciency compared to ablations that do not use a pregrasp or are initialized far away
from the object.

a graspable position, as demonstrated in the human video. Fixed Target and Interpolated

Target encourage the policy to greedily move the plate directly to the target in the air, but they

struggle to pick up the plate and get stuck in a local minimum. The policy does not explore

extrinsic manipulation because this requires navigating to low reward regions for a long period.

Downsampled Trajectory is able to learn the task, but it takes longer to learn due to the weaker

learning signal. It produces jerky motions in hopes of maximizing reward by tracking the waypoints

that jump suddenly. Ours uses the full dense object pose trajectory, and it achieves the strongest

performance and converges the fastest. This underscores the e↵ectiveness of our dense, object-

centric, and embodiment-agnostic reward function.

3.3.5 Importance of Pre-Manipulation Pose Initialization

We run ablation experiments in simulation to study the importance of pre-manipulation pose initial-

ization, comparing against: (1) Default Initialization: We initialize the robot configuration at a

default rest pose that is not close to the object; (2) Overhead Initialization: We compute a joint

configuration with IK setting the robot palm 5cm above the object. We set the hand to a default

open hand pose; (3) Pre-Manipulation Far: We initialize the robot with the pre-manipulation

hand pose, but adjust the arm joint angles to move the robot palm 20cm away from the object.

Figure 3.11 shows that Human2Sim2Robot achieves a substantially higher average reward than

the other methods. Default Initialization and Pre-Manipulation Far perform the worst due to

exploration challenges from the hand starting too far from the object. Overhead Initialization

performs slightly better because it starts closer to the object, but fails to converge on a successful
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Figure 3.12: Full Hand Trajectory Ablation. Reward curves comparing our method with meth-
ods that require the full human hand trajectory. Ours achieves higher rewards in a shorter amount
of time than ablations that use the full hand trajectory as hand-tracking rewards (achieves compara-
ble reward eventually but is slower to converge) and to train a residual policy (much lower rewards).

policy because the overhead grasp provides a disadvantageous prior, as it is not the optimal ap-

proach for performing the task. Ours achieves the highest reward by providing an advantageous

initialization, which minimizes exploration challenges.

Overall, we show that for e�cient exploration, the policy should be initialized in the rough region

of the pre-manipulation pose. To eliminate the need to initialize the robot hand in close proximity

to the object, methods such as collision-free motion planning or an initial approach stage reward

formulation (like having a reward for minimizing the L2 distance to the pre-manipulation pose) have

potential to overcome this challenge. These techniques can be seamlessly integrated into our system

to facilitate navigation from a default rest pose to the pre-manipulation pose. Our experiments

presented here highlight the significant e↵ectiveness of the pre-manipulation pose in guiding the RL

policy toward learning human-like behaviors for contact-rich manipulation tasks.

3.3.6 Su�ciency of Single Pre-Manipulation Pose

We run ablation experiments in simulation to compare pre-manipulation pose initialization to

methods that require the full human hand trajectory: (1) Hand Tracking Reward: We add

r
hand
t = exp

�
�↵kXfingertips

�Xdesired-fingertips
k
�
to encourage tracking the human hand trajectory.

The total reward is rt = r
obj
t + r

hand
t ; (2) Residual Policy: Using the same object-centric reward,

we replay the retargeted robot trajectory open-loop while learning delta PD joint targets [14].

Figure 3.12 shows the reward curves of these methods. Hand Tracking Reward is able to

learn an e↵ective policy, but it learns more slowly because it initially focuses on improving its hand-

tracking reward, which is not always conducive to policy performance. When trained to convergence,

Hand Tracking Reward does not show any substantial improvement over our method, despite
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requiring additional data and supervision. Residual Policy’s performance is substantially worse

because inaccurate hand pose estimation results in a poor base motion that is di�cult to learn an

e↵ective residual policy for. In contrast, Ours is able to e↵ectively learn the task without requiring

the full human hand trajectory as additional supervision.

3.4 Discussion

In this work, we present Human2Sim2Robot, a real-to-sim-to-real RL framework for learning

robust dexterous manipulation policies from a single human hand RGB-D video demonstration.

Our method facilitates training RL policies in simulation for dexterous manipulation by formalizing

tasks through object-centric rewards and a pre-manipulation hand pose. We present the following

system design decisions in Human2Sim2Robot for addressing several key challenges in training

general dexterous manipulation robot policies:

1. Eliminating reward engineering e↵ort: We automatically extract rewards from the human

demonstration via an object pose trajectory, creating a dense, embodiment-agnostic, object-

centric reward for e↵ectively training RL policies without any task-specific reward tuning.

2. Facilitating e�cient exploration: We use a pregrasp pose derived directly from the human

demonstration as a prior to initialize RL training, biasing the policy towards human-like grasps.

3. Bridging the human-robot embodiment gap: By allowing the agent to learn and explore

through interactions in its own embodiment, the agent was able to learn manipulation strate-

gies optimal for its own embodiment rather than rigidly imitating human behaviors, thereby

successfully bridging the human-robot embodiment gap.

4. Robust sim-to-real transfer: By leveraging techniques such as domain randomization of

system parameters, random perturbations, and pose noise, we facilitated robust sim-to-real

transfer of policies trained in simulation to a real-world robot arm with a dexterous hand.

Our policies show significant improvements over existing methods across grasping, non-prehensile

manipulation, and extrinsic manipulation tasks, representing a step forward in facilitating scalable

and robust training of real-world dexterous manipulation policies with <10 minutes of human e↵ort.

Our experiments present new insights into the potential avenues for leveraging RL in simulation

to cross the embodiment gap in a low demonstration regime. We explore ways of formalizing task

specification and guidance using a single human demonstration, and leveraging this to e�ciently

train RL policies in simulation, which we use sim-to-real policy transfer to deploy in the real world.

This prompts several avenues for future research as well as broader implications for exploring how

to most e�ciently leverage a small amount of human data for generalization robot learning at scale:
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3.4.1 Scaling to New Embodiments

Scaling to Other Arms and End-E↵ectors. We evaluate Human2Sim2Robot’s ability to

bridge the human-robot embodiment gap using a Kuka arm and Allegro hand. While we have

not conducted extensive quantitative evaluations on other embodiments, we expect our framework

to be similarly e↵ective for other embodiments, as our framework was deliberately designed to be

embodiment-agnostic. Specifically, our object-centric reward function and training pipeline do not

rely on embodiment-specific assumptions. As a preliminary test, we present initial experiments

on the LEAP Hand [112] and UMI gripper [17], which achieved strong performance with minimal

modifications (see Appendix B.9 for details). We believe these early results are promising, and future

work can further validate our approach on a broader range of robot hands and arms.

Scaling to More Complex Embodiments. Beyond di↵erent robots and arms, an excit-

ing area of future work is to explore the applicability of this framework to hardware with more

complex morphologies and kinematics, such as bimanual or whole-body manipulation and mobile

manipulation. Some refinements to the framework for such settings might include:

• Exploring a broader range of more complex tasks. For example, handover tasks from one hand

to the other, reorientation of large objects that require two hands, and coordination tasks (e.g.,

pouring from a pitcher in one hand to a cup in another hand).

• Robust collision avoidance for bimanual robot arms or whole-body manipulators.

• Determining pregrasp(s) for multiple end-e↵ectors. For example, determining the necessary

pregrap(s) for an end-e↵ector waiting to receive an object in a handover task that is not actively

manipulation an object at the start. In such cases, perhaps a single pregrasp does not provide

su�cient priors for multiple manipulators that are coordinating object interactions.

• Modifying our object-centric reward function to encode temporal consistencies between tra-

jectories of two objects. For example, a right arm should only begin to pour from the pitcher

when left arm has correctly positioned the cup.

• Exploring dynamic cameras, egocentric camera viewpoints, or multi-camera perception to

minimize occlusions of manipulators by objects from a fixed camera viewpoint.

The above are considerations for more complex systems that our framework currently does not

explicitly address a single-arm, single-object setting. In these settings, the range and complexity of

tasks and action space increases dramatically, and seeing what aspects of the framework transfer

and what aspects need to be modified is an interesting area of exploration.
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3.4.2 Feasibility of Real-to-Sim-to-Real at Scale

Training RL policies in simulation was crucial to our pipeline, and enabling this required a robust

real-to-sim and sim-to-real pipeline. Recent advancements in scanning applications for real-to-sim

transfer [58, 64] made this process very e�cient, requiring <10 minutes of human e↵ort per task.

Obtaining high-quality scene and object scans was very achievable in a lab setting; however, it

is unclear how feasible real-to-sim will be for complex industrial or home settings. There is good

reason to believe that obtaining high-fidelity scene scans of complex environments will become easier

over time: 3D scanning applications on mobile devices equipped with LiDAR makes this procedure

accessible, and with further engineering developments, there is good reason to be optimistic that

fidelity of these scans will only continue improving.

A key challenge involves accurately modeling articulated objects with joints at scale: current

approaches such as Torne et al. [2024] add prismatic and revolute joints manually to a scene scan

using a GUI, but this is hard to do at scale for every object in the home, o�ce, or warehouse.

Another challenge is modeling the interaction dynamics or collision models of very irregular objects:

for example, the dish rack we used in plate-pivot-lift-rack had spokes which were complicated

to model even with a good quality object mesh, thus the plate was hard to insert fully in simulation

even though it was achievable in the real environment. The primary challenge for future research,

therefore, is less so the photorealism of 3D scans, but instead modeling the physical interaction

dynamics of objects in the scene, which becomes exponentially more complex as the environment

scale increases beyond a tabletop and features a greater diversity of objects.

For sim-to-real transfer, proposing novel approaches to minimize the sim-to-real gap was orthog-

onal to our focus on learning-based methods for dexterous manipulation. However, it was critical for

the success of our system in real-world deployment. A large body of work has investigated techniques

such as domain randomization [12], simulation parameter inference and system identification meth-

ods for accurate physics simulation [120], adding observation noise to simulate sensor noise [122],

adding random perturbation forces [6], and augmenting datasets to simulate partial observability

(e.g., by intentionally adding occlusions). Continued research into refining these techniques will help

improve the photorealism and physical realism of simulators and further narrow the sim-to-real gap.

That said, a key observation of our work is the importance of a good observation bridge between

simulated and real environments that are visually dissimilar. We used 6D object pose that works

well despite visually dissimilar environments; other works use natural language as a bridge [142], and

another option is object segmentation masks, which are can be accurately obtained with modern

segmentation and tracking models. We found that SAM 2 [105] was generally more robust than

FoundationPose [132] for reliably tracking objects over long periods despite occlusions; while our

system used SAM 2 masks to correct FoundationPose predictions at test time, future work can

explore using 2D or 3D object segmentations or point trajectory methods as an observation bridge.



CHAPTER 3. SIM-TO-REAL RL FROM ONE HUMAN DEMONSTRATION 35

Figure 3.13: Robustness Analysis: Demonstrating Human2Sim2Robot’s robustness to visual
distractors, background and lighting changes, and robot and object perturbations during policy
rollouts, a benefit of training with low-dim pose observations and random object forces in simulation.

3.4.3 6D Pose vs. Point-based Observation Modality.

Human2Sim2Robot demonstrates several advantages of using 6D object pose as an observation

modality for policy training: strong robustness to visual distractors, background changes, and light-

ing changes during policy rolloust (see Figure 3.13), faster and simplified policy training due to

low-dimensional observation inputs, a dense object-centric reward function, and a good bridge for

sim-to-real policy transfer that sidesteps the photorealism gap, a challenge that a↵ects training

image-based policies in simulation with rendered images.

However, there are limitations to using object pose for low-dimensional observations. Frameworks

using this modality assume access to a high-quality object tracker (in our case, an object pose

estimator) and simulator. Our tasks can therefore only feature rigid-body objects and environments,

which can be e�ciently tracked with existing pose estimators [132] and simulated using existing rigid-

body simulators [82]. Extending the framework to articulated or deformable objects would require

adapting Human2Sim2Robot to di↵erent approaches for state estimation and simulation modeling,

which is dependent on advancements in these areas beyond rigid objects.

Beyond generalizing to non-rigid objects, our pose estimator also struggles with pose ambiguity

of symmetric objects and sensor noise from reflective objects, or prolonged periods of significant

occlusion of objects (especially when in grasp). Invariance to pose ambiguity of symmetric objects
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can be achieved by modifying the anchor points used to determine object-centric rewards, for instance

by automatically determining the axis of symmetry given the object mesh [98] and removing points

orthogonal to this axis of rotation (see Appendix B.3). Reflective objects can be managed by

distilling the pose-based policies into image-based policies, similar to prior work [72, 121].

Even if more generalizable and robust object tracking methods are developed, a broader question

is whether it is feasible to assume that such a system can be implemented at scale, for instance in

homes or in industrial settings. Our object pose estimator requires the object 3D model as input,

and the model-free pose estimator using multiple RGB images of the object was much less reliable.

While obtaining a high-quality object 3D model from a LiDAR scan was not prohibitively di�cult

for our framework, it might not be realistic to assume access to all object 3D models in large-scale

industrial or home settings. In the broader literature, training image-based visuomotor policies [3,

5, 16, 46, 56, 146] has been dominant in robot learning due to the vast availability of Internet-scale

images and videos [23] and image-based robot datasets [19, 28, 55, 126]. Crucially, such methods do

not require prior knowledge of the object’s 3D geometry at test-time, and only requires RGB cameras

rather than depending on RGB-D or stereo cameras for accurate depth and shape information.

Hence, a key advantage of using point-based observation modalities (e.g., RGB images or point

clouds) is their ability to relax the assumption of access to high-quality object 3D models, making

them more feasible to obtain at test time. While they are more scalable, image-based policies tend to

be more sensitive to visual changes such as background and lighting, as we observed in Section 2.4.1.

Alternatively, if using simulation-based methods, the photorealism gap between real and rendered

images or point clouds often causes policy deterioration during sim-to-real transfer, and training

time is longer due to image rendering in simulation. This can be addressed with significant visual

augmentation or pose-to-image distillation. In addition, obtaining object-centric representations

for policy training require using object segmentations [105] or 2D point-trajectories [106]. These

representations can serve as good bridges for sim-to-real transfer, though current pixel tracking

methods [50] are generally less robust to occlusions and noise than pose estimators.

Overall, determining the ideal observation modality for a particular use case depends on whether

certain assumptions (e.g., access to object 3D models, depth information) can be made. In either

case, a combination of data augmentation or policy distillation [72, 121] between modalities can be

leveraged to achieve the best of both worlds and facilitate more robust policies, and future research

can investigate performing such pipelines at scale in diverse environments.

3.4.4 Test-time Adaptation to New Objects and Trajectories

Human2Sim2Robot currently trains robust single-object, single-task policies for tasks specified

by the pose trajectory of a single object. To achieve truly generalizable robotic manipulation,

robotic agents should be able to leverage experience from prior object interactions to generalize to

novel objects and trajectories at test-time, as humans often do. Future work can explore training
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generalist multi-task, multi-object policies that are conditioned on object geometry (e.g., basis point

set of point cloud features [100]) and desired object trajectory. This can be achieved using multi-

task RL or teacher-student distillation [21, 135]. A potential pipeline for such a system could be:

leveraging Human2Sim2Robot to train multiple single-task single-object policies spanning several

objects and trajectories, then distill those policies into a single multi-task policy conditioned on

trajectory and object geometry. At test time, given an unseen object with novel geometry and a

trajectory specified by a human demonstrator, the policy can execute the trajectory zero-shot.

To implement this at scale with diverse objects and trajectories that su�ciently cover the state

space, a more automated method than collecting many real-world human videos is to train single-task

single-object policies and perform policy distillation purely in simulation. By using highly diverse

simulated assets and automatic trajectory generation (e.g., RoboCasa [91] or other text-to-3D asset

generative models), it may be easier to scale up object and trajectory diversity to distill into a robust

multi-task policy (inspired by Luo et al. [2024b]). This approach would instead be a sim-to-real

pipeline that eliminates the need to collect lots of human videos with real-world objects, and just

use a single human demonstration at test-time for the novel object and trajectory.

3.4.5 Accounting for Execution Mismatch

Human2Sim2Robot dense object pose trajectory-tracking reward encourages the robot to follow

the same object trajectory specified by the human, which in our case was successful for most tasks

using a dexterous robotic hand. However, for highly dissimilar embodiments to human hands such

as parallel-jaw grippers, it may be impossible for the robot to follow the human-provided trajectory

for very complex tasks. For example, for plate-pivot-lift-rack, a parallel-jaw gripper robot may

not be able to accomplish the human trajectory. An example optimal strategy for the robot could

be pushing the plate to the edge of the table until part of the plate is o↵ the table, then grasping

and placing it into the dishrack. Our current reward formulation would not directly reward such

behavior as it deviates fairly significantly from the human-provided trajectory, even if it is more

optimal for the robot, and whether the robot explores this strategy is up to random chance.

This execution mismatch is not accounted for in our current reward formulation. Future work

could investigate leveraging more diverse data to address this issue; for example, collecting multi-

modal trajectories for completing the task (from one or multiple demonstrators), predicting feasiblity

scores for object poses in the human-provided trajectoryies given the robot embodiment [7], and

stitching together trajectory segments with high feasibility to complete the task.
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Conclusions & Future Work

In this thesis, we focused on the problem of scaling robot learning to new tasks, objects, and en-

vironments, without proportionally scaling the amount of human e↵ort required. We discussed

several ideas to address a critical challenge in robot learning: e�ciently leveraging human data to

train robust robot policies. To explore this question, we compared two RL-based approaches: (1)

real-world autonomous RL shaped by VLM-generated rewards, and (2) sim-to-real RL from one

human-demonstration. In Section 2, we presented Keypoint-based A↵ordance Guidance for Im-

provements (KAGI), a method for facilitating autonomous improvements of policies pre-trained on

diverse human teleoperated data using VLM-generated shaping rewards, enabling robots to learn

through interaction and self-practice in an autonomous, data-e�cient manner. In Section 3, we

proposed Human2Sim2Robot, a real-to-sim-to-real RL framework for learning robust dexterous

manipulation policies from a single human hand RGB-D video demonstration, leveraging task ab-

stractions from the human video and domain-randomized simulation to train robust real-world RL

policies with only a few minutes of human e↵ort. We now conclude with a commentary comparing

the approaches presented in this work, and by connecting the works presented with parallel research

developments that facilitate scalable robot learning with minimal human e↵ort.

Real-World vs. Sim-to-Real RL. Assuming a specific target environment, there are two

primary benefits of real-world RL: first, the input observations will be in a more similar data dis-

tribution between train-time and test-time (especially for image-based policies), and second, agents

learn directly from interaction with the physical environment subject to the environment’s true dy-

namics, avoiding the sim-to-real dynamics gap. However, the primary drawbacks are that collecting

a large amount of interaction data with environment resets is time-consuming, costly, and potentially

unsafe, therefore it typically requires constant human supervision. The high sample complexity of

RL often makes real-world training impractical. Therefore, current approaches still require sub-

stantial human e↵ort and supervision for collecting in-domain demonstrations of the target task,

optionally providing expert corrections during policy rollouts, and either performing environment

38
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resets or supervising systems that autonomously self-practice. This may seem prohibitive for scaling

robot learning; however, significant improvements in the performance of robotic foundation models

could dramatically reduce the amount of human e↵ort required for fine-tuning these models for

specific tasks and environments with RL, which we explore in the next section.

In simulation, trajectory rollouts can be generated cheaply and at high speed, especially in fast,

parallelized simulation environments. State-of-the-art techniques like domain randomization and

random perturbations have helped narrow the sim-to-real gap dramatically. Only a small amount of

real-world data (or none at all) is required for task specification or to adapt to or validate real-world

dynamics; in this regard, sim-to-real RL is a promising approach in scaling robot learning without

significantly increasing human e↵ort. That said, the primary limitation of this method is quickly and

accurately building high-fidelity 3D models in simulation, both in terms of photorealism and physical

realism, of diverse environments at scale. For policies trained in simulation to successfully and safely

transfer from to the real world, accurate collision and dynamics modeling at scale is of paramount

importance. A potential hybrid approach could involve generating highly diverse interaction data

for pre-training policies in simulation, followed by a short phase of real-world RL fine-tuning to

adapt to novel tasks and the real-world environment dynamics, as proposed in Section 3.4.4.

Importance of a Performant Pre-Trained Policy. A key takeaway from our discussion on

the e�cacy of autonomous real-world RL is that real world RL fine-tuning should only be used as a

last-mile solution. It is important that the pre-trained policy is generally very performant, such that

real-world fine-tuning with RL does not have such a large performance gap to make up for, and can

yield policies capable of real-world deployment within a reasonable amount of time. As a general,

high-level goal, a sound pipeline for deploying a robotics system at scale in real-world environments

would use real-world RL fine-tuning to elevate the performance of a pre-trained policy that succeeds

⇠70-90% of the time to ⇠100% in ⇠1 hour or less. KAGI’s pre-trained o✏ine RL policies were much

below this threshold, creating a large performance gap for RL fine-tuning to improve, and elevating

the performance of pre-trained models across general tasks is an important research endeavor.

Beyond directly leveraging LLMs and VLMs to reason over robotic manipulation tasks as we

explored in KAGI, parallel e↵orts seek to apply the foundation model paradigm to robot data by

training vision-language-action models (VLAs): models that take as input raw visual observations

and high-level language instructions, and outputs robot actions [3, 5, 19, 53, 54, 56, 94, 95]. By

leveraging language model and vision transformer backbones, as well as pre-training on large-scale

human and robotic datasets, VLAs formalize robotic manipulation as next-token prediction, gener-

ating action tokens that can be decoded into robot actions and directly executed on robot hardware.

While VLAs require broad, large-scale training datasets, generalist robot policies that transfer zero-

or few-shot to novel settings can drastically reduce the amount of human e↵ort required at test time.

Training highly performant and general pre-trained VLAs could make autonomous RL fine-tuning

pipelines like KAGI more practically useful. Kim et al. [2025] explores fine-tuning VLAs to adapt to
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new tasks using teleoperated demonstrations. However, allowing pre-trained VLAs to autonomously

improve and refine their behavior, guided by shaping rewards from VLMs, could further reduce the

amount of human e↵ort needed to collect task-specific in-domain demonstrations, allowing VLAs to

generalize to novel tasks by interacting with the environment online. The benefit of real-world RL in

this scenario is that most VLAs are trained with real-world RGB images. With real-world RL fine-

tuning, the observations collected as interaction data are more in-distribution with the pre-training

data, making it a viable method for elevating the performance of pre-trained VLAs. Fine-tuning

VLAs in simulation has not yet been explored, potentially due to the significant distribution shift in

observation space that might not result in improvements or even worsen the performance of the pre-

trained model. An interesting avenue of research could explore unifying the paradigms of real-world

RL, sim-to-real RL, and robotic foundation models by leveraging the advantages of simulation to

fine-tune VLAs for adaptation to a specific environment.

Evaluating the Purpose of Human Demonstrations. A broader question involves re-

evaluating the purpose of human demonstrations. Rethinking the role of human data is essential

for scaling up robot learning and deployment without proportionally increasing human e↵ort. Tra-

ditionally, data-hungry learning regimes like IL require humans to collect on the order of hundreds

or thousands of trajectories as input for model training via teleoperation. While these e↵orts are

important for training generalist robotic foundation models, the sheer diversity of tasks, objects,

and environments that we want robots to be useful for makes it extremely challenging to collect

data that su�ciently covers the space of potential interactions. This thesis proposes a shift in how

we conceptualize human data in robot learning: rather than relying on large-scale demonstrations

as direct inputs for training robotic policies, we propose a more strategic use of human data as a

means for task specification and adaptation through online interaction.

Our work shows that human demonstrations need not serve as large-scale training datasets to be

imitated, but rather as rich sources of task specification and task completion strategies. By extracting

essential task abstractions and goal representations from minimal human input, we enable robot

learning systems to autonomously explore and refine their own behaviors. The work presented in this

thesis points towards an approach that inverts the traditional paradigm: instead of scaling human

e↵ort proportionally with the complexity of robot capabilities, we utilize sparse human guidance

to bootstrap self-directed learning processes. Our results across diverse manipulation tasks, using

autonomous RL with VLM-shaped rewards and sim-to-real transfer from a single demonstration,

suggest that the future of robot learning lies not in relying primarily on humans to collect millions of

demonstrations, but in developing frameworks that maximize the informational value extracted from

each human interaction. A small set of human demonstrations can provide useful priors, guiding

robots toward e�cient fine-tuning and rapid generalization to new tasks. This approach shifts the

focus from data quantity to data utility, unlocking scalable and adaptive robot learning systems

while reducing reliance on manual human e↵ort.
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Chapter 2 Appendix

A.1 Qualitative Analysis of VLM Performance.

The performance of our online RL fine-tuning system is influenced by the accuracy of VLM keypoint

and waypoint predictions. While MOKA [30] verifies that keypoint-based reasoning of VLMs are

reliably accurate for tabletop manipulation and generalizable to new objects and tasks, the paper

only provides a single top-down viewpoint to the VLM, since MOKA’s open-loop primitives compute

actions based on pre-determined depth information specific to the evaluation setup, which requires

manual engineering and tuning.

We observe that for closed-loop RL systems, providing dual-angle viewpoints are important to

accurately generate waypoint trajectories in 3D space for dense rewards. We modify MOKA’s [30]

metaprompt to accommodate this additional dimension of input, so as to generate 3D waypoints

instead of 2D waypoints for KAGI’s dense rewards. We keep this metaprompt the same across all

tasks. To test the robustness of our prompting structure, in addition to GPT-4o, we analyze the

outputs generated from our prompts when provided to GPT-4V (used by MOKA [30], larger but

slower than GPT-4o) and Gemini 1.5. Qualitative analysis of each VLM’s outputs on our tasks

determines that Gemini performs similarly and can replace GPT-4o in our framework. GPT-4V,

while generally reliable, sometimes struggles to generate sensible depth movements using the side-

angle view to facilitate successful completion of the task. Overall, KAGI is designed to flexibly

incorporate existing and future VLMs of similar or better reasoning capability compared to GPT-

4o, and we leave extensive qualitative comparisons and benchmarking frameworks for VLMs on 3D

spatial reasoning tasks to future work.

A.2 Verifying Reproduction of RoboFuME.

Since our proposed dense shaping rewards to improve online policy fine-tuning are integrated into

RoboFuME [139], and RoboFuME is a key baseline, we performed preliminary experiments on

56
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two tasks featured in [139] – Cloth Folding and Cloth Covering – and verified their successful

reproduction. We also performed additional experiments verifying RoboFuME’s reliance on high-

quality in-domain demonstrations with low multimodality for both pre-training RL policies and

fine-tuning the sparse reward classifier, showing that eliminating in-domain demonstrations entirely

was catastrophic for the system’s performance. Finally, we explored RoboFuME’s selection of Bridge

data subsets [28, 126] for pre-training their o✏ine RL policies for tabletop manipulation tasks, which

we use in our experiments.

Overall, our preliminary experiments revealed that there are robustness challenges for pipelines

relying on a large number of high-quality in-domain demonstrations, and incorporating task-relevant

o✏ine data facilitates transfer to the desired task. These key findings motivated the methodological

details of KAGI for improving the e�ciency of online fine-tuning with VLM-generated dense shap-

ing rewards.

Please see the Additional Information section of our project page for more details on these areas

of analysis and other preliminary experiments.

https://sites.google.com/view/affordance-guided-rl
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Chapter 3 Appendix

B.1 Real-to-Sim & Human Demo Processing Details

B.1.1 Digital Twin Construction Details

In this section, we describe the construction of the digital twin simulation environment (i.e., real-

to-sim) and how we process the human demonstration. We start by taking a scan of the real-world

environment for transfer to simulation. We used the o↵-the-shelf LiDAR scanning app called 3D

Scanner App [64] to perform a detailed scene scan of the workspace (including static objects on

the tabletop) and the robot. We then used this scene scan to align the robot, tabletop, and static

objects in our digital twin simulation. The scene scan took ⇠3 minutes and alignment of the assets

in simulation took another ⇠2 minutes. This process was performed once and the same simulation

environment was used for all tasks. Next, we need to take an object scan to obtain the object

mesh used for object pose tracking. We use another o↵-the-shelf LiDAR scanning app called Kiri

Engine [58] to do this, as we find it is better for scanning small objects than the 3D Scanner App

(conversely, 3D Scanner App seems better for larger scene scans than Kiri Engine). This takes ⇠2

minutes per object, and we only need to do this once per object used in our experiments. All relevant

code for the real-to-sim pipeline can be found here.

B.1.2 Human Demo Processing Details

For processing the human demonstration, each task takes 0.5 minutes to obtain an RGB-D video

demonstration. The human demonstration is then processed in three steps: (i) generating the

per-frame object and hand masks using SAM 2 [105]; (ii) generating the object pose trajectory

by passing in the RGB-D video frames, object segmentation mask frames, and object mesh into

FoundationPose [132]; (iii) obtaining the pre-manipulation hand pose by passing the corresponding

RGB frame into HaMeR [97], then performing depth alignment with the segmented hand depth

values. In total, demonstration processing takes ⇠5-10 minutes, with only a few seconds of human

e↵ort. All relevant code for processing human video demonstrations can be found here.
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https://github.com/h2s2r-anonymous/human2sim2robot/tree/main/human2sim2robot/real_to_sim
https://github.com/h2s2r-anonymous/human2sim2robot/tree/main/human2sim2robot/human_demo
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B.1.3 Depth Alignment of HaMeR Hand Pose Estimates

HaMeR [97] predicts MANO hand pose and shape parameters from a single RGB image. While

its 2D projections are generally reliable, the absence of depth information leads to significant 3D

errors, which can be as large as 20–30 cm, particularly when the hand is far from the camera. Such

discrepancies result in suboptimal pre-manipulation hand poses, adversely a↵ecting reinforcement

learning (RL) initialization and methods that require a full human hand trajectory.

To address this issue, we incorporate depth information to refine HaMeR’s hand pose predictions.

First, we obtain the initial MANO hand estimate from HaMeR. Next, we generate a hand segmen-

tation mask using SAM 2 [105 and extract the corresponding 3D hand points from the depth image

using the camera parameters. Next, we compute the 3D positions of the predicted MANO hand

vertices visible to the camera and use a clustering algorithm to filter out erroneous depth points.

Specifically, we construct a KD-tree from the extracted 3D points and identify pairs of points within

5 cm using nearest-neighbor queries. We then represent these points as a graph, where edges con-

nect nearby points. We assume that the hand point cloud is the largest connected component, so

we only retain the points in this connected graph, which mitigates the impact of depth noise and

segmentation errors from the arm or background. Finally, we apply Iterative Closest Point (ICP)

registration to align the MANO prediction with the segmented depth-based point cloud. This ap-

proach e↵ectively improves alignment in most frames. However, accuracy degrades when significant

occlusions occur, such as when fingers grasp around an object and face away from the depth camera.

B.2 Human-to-Robot Retargeting Details

To perform arm IK, we use the parallelized IK solver provided by cuRobo [118]. The solver generates

100 unique solutions, each seeded with 20 joint configurations. These configurations consist of a

selected joint configuration combined with random noise sampled from a normal distribution with a

standard deviation of 15 degrees. From these solutions, we select the one closest to the selected joint

configuration that meets the desired target within 5 cm for position and 3 degrees for orientation. The

pose target is the position of middle knuckle (called “middle 0”) with a 3cm o↵set in the negative

direction of the palm normal and a 3cm o↵set in the negative direction of the wrist to middle

knuckle, and the orientation of the wrist (called “global orient”) with a rotation o↵set accounting

for the di↵erence in orientation convention of the wrist and middle knuckle.

For hand IK, we use PyBullet’s IK solver [20]. The Allegro hand is moved to the pose from the

previous arm IK solution, after which we solve IK for each finger to reach the specified fingertip

targets. A default hand pose is used as the rest pose. Since achieving precise alignment with all

fingertip targets is not always possible, PyBullet’s solver provides reasonable solutions in these cases,

whereas cuRobo’s solver may yield poor results when it fails. We use position targets at the human

hand fingertips (called “index 3”, “middle 3”, “ring 3”, and “thumb 3”) with no adjustments.
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To retarget the pre-manipulation hand pose, we execute the above process once, using the default

upright arm configuration as the selected joint configuration for seeding the solver and selecting the

best solution. During this step, we apply collision-free arm IK to ensure the robot avoids contact

with the environment or objects, as this joint configuration should not be in collision.

For retargeting the full hand pose trajectory, we iteratively solve for each hand pose, using the

previously computed solution as the selected joint configuration to seed the solver. This approach

ensures consistency in joint angles between frames, resulting in smoother motion. While solving, we

enforce collision-free arm IK to avoid contact with the environment. However, we do not enforce

object collision avoidance, as contact with the object is often necessary and both hand and object

pose estimates are imperfect. If the IK process fails for a particular pose, we skip that index and

proceed to the next one, keeping track of the corresponding timesteps.

When evaluating solutions, we select the one closest to the selected joint configuration based on

the infinity norm, ||qsolution � qselected||1.

After retargeting the full hand pose trajectory, we modify the trajectory to ensure smoothness.

At each timestep, we compute the arm joint velocity with first-order finite-di↵erencing. If any arm

joint velocity exceeds its velocity limit (indicating a discontinuity or sudden jump in joint positions

within a short time period), we increase the time interval between those points and interpolate the

intermediate values. This ensures that the joint velocity limits are respected, resulting in a smooth

trajectory that can be safely executed on the robot.

B.3 Reward Function Details

Goal Trajectory

Actual Trajectory

Figure B.1: Modifying Anchor Points. For rotationally
symmetric objects, we remove anchor points orthogonal to
the axis of symmetry (automatically determined [98]). This
modified object pose representation is used for both reward
computation and policy observation.

Our reward function formulation is

flexible enough to handle rotational

symmetries or axis invariances by re-

moving or repositioning anchor points

as needed. Apart from the adjust-

ments for rotationally symmetric ob-

jects, we use the same value for hyper-

parameter L for all tasks in the exper-

iments. This highlights the general-

ity and robustness of the proposed re-

ward specification, making it broadly

applicable across various tasks and objects.

Figure B.1 shows how anchor points can be modified to accommodate rotational invariance

for rotationally symmetric objects. Our use of anchor points is a very flexible representation to

parameterize a pose tracking reward function.
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B.4 Initial State Distribution Sampling

In this section, we describe sampling the initial state distribution for RL training in simulation.

We sample the object pose as T obj
1 = T target

⌧ T random, where T random
2 SE(3) is random pose

noise. The rotation component of T random is sampled as roll, pitch, and yaw angles from r, p, y ⇠

U(�✓max, ✓max), where ✓max = 20�. The translation component of T random is sampled as tx, ty, tz ⇠

U(�tmax, tmax), where tmax = 0.1m is the maximum displacement. Next, we compute the relative

transformation T relative =
�
T obj

��1
Twrist to determine the new pre-manipulation wrist pose as

T obj
1 T relative. A small amount of noise is added to the new wrist pose and hand joint angles.

B.5 Simulation Training Details

We train our policy using Isaac Gym [82], a high-performance GPU-accelerated simulator that

enables the parallel simulation of 4096 robots per GPU. Each policy is trained on a single NVIDIA

A100 GPU with 40 GB of VRAM. This configuration allows us to achieve a simulation speed of

approximately 7k frames per second (FPS). Each frame corresponds to a single action step with a

control timestep of 66.7 ms (15 Hz), subdivided into 8 simulation timesteps of 8.33 ms (120 Hz).

Our training duration ranges from approximately 5 to 24 hours wall-clock time depending on the

task, amounting to around 0.6 billion frames, which corresponds to roughly one year of simulated

experience (0.6B / 15 / 3600 / 24 / 365).

We train our policies using Proximal Policy Optimization (PPO) [108] with rl-games [81], a highly

optimized GPU-based implementation that employs vectorized observations and actions for e�cient

training. The policy is trained with learning rate 5 ⇥ 10�4, discount factor � = 0.998, entropy

coe�cient of 0, and PPO clipping parameter ✏clip = 0.2. Additionally, we normalize observations,

value estimates, and advantages, and train the policy using four mini-epochs per policy update.

We use to↵set = 30 (at 30Hz, 1 second) by default, though we slightly vary to↵set depending on

how quickly the human demonstration was performed.

Although our control policies will not have access to privileged simulation state information when

deployed in the real world, we can still use privileged information to accelerate training in simulation.

We use Asymmetric Actor Critic training [99], in which our critic V (s) is given all privileged state

information s and our policy ⇡(o) is provided an observation o, which is a limited subset of this

privileged state information. With this method, the policy learns to perform the task using only

observations we can capture in the real world, but the critic can leverage privileged state information

to provide more accurate value estimates, improving the speed and quality of policy training.

The state at timestep t is st = [ot,vt,!t, t,fdof
t ,F fingers

t ], where ot is the observation, vt 2 R3

is the object linear velocity, !t 2 R3 is the object angular velocity, t 2 R is current timestep,

fdof
t 2 RN joints

is the vector of robot joint forces, F fingers
t 2 RN fingers

contains fingertip contact forces.

The training process utilizes a horizon length of 16 (i.e., the number of timesteps between updates



APPENDIX B. CHAPTER 3 APPENDIX 62

for each robot, with all robots running in parallel) and 4096 parallel agents. The policy architecture

consists of a multi-layer perceptron (MLP) with hidden layers of size [512, 512], an LSTM module

with 1024 hidden units, and a critic network with hidden layers of size [1024, 512].

To improve the robustness and generalization of our policy, we apply extensive domain ran-

domization during training. Randomizations are applied every 720 simulation steps and include

variations in observations, actions, physics parameters, and object properties. Gaussian noise with

a standard deviation of 0.01 is added to both observations and actions. Gravity is perturbed addi-

tively using Gaussian noise with a standard deviation of 0.3. The scale, mass, and friction of the

object and table are randomized with a scaling parameter sampled from [0.7, 1.3]. The robot’s scale,

damping, sti↵ness, friction, and mass are also randomized with a scaling parameter sampled from

[0.7, 1.3].

We also introduce random force perturbations to the object. At each timestep, there is a 5%

probability of applying a force with a magnitude equal to 50 times the object’s mass, directed along a

randomly sampled unit vector. These perturbations serve two key purposes. First, they can displace

the object before the robot makes contact, simulating real-world uncertainties such as unexpected

disturbances or pose estimation errors. This encourages the policy to actively track and reach for

objects that may not be precisely where they were initially observed. Second, if the object is already

grasped, these perturbations can destabilize the grasp, promoting the development of robust and

stable grasping strategies that minimize the likelihood of dropping the object.

All relevant code for PPO can be found here, and for simulation training found here

B.6 Real-Time Perception Details

In this section, we describe our real-time perception pipeline, which enables pose estimation at 30Hz

using FoundationPose [132]. The process begins with pose registration to determine the object’s

initial pose, which takes approximately 1 second. This step requires a textured object mesh and a

segmented object mask. To generate the mask, we pass the image and a text prompt into Grounding

DINO [71] to obtain an object bounding box. The image and bounding box are then passed to

SAM2 [105], which produces a high-quality segmented object mask. The text prompt can either be

manually provided or automatically generated by rendering the textured object mesh into an image

and using GPT-4o to produce a descriptive prompt.

Once the initial pose is established, FoundationPose performs real-time object pose tracking by

generating pose hypotheses near the previous estimate and selecting the best match, achieving a

consistent 30Hz rate. Although tracking is generally robust, pose estimates can degrade when the

object moves rapidly or becomes heavily occluded. To address this, we implement a separate pose

evaluation process that monitors the pose estimate quality and triggers re-registration if needed.

This evaluation is performed by running SAM 2 at 1Hz to produce high-quality segmented

https://github.com/h2s2r-anonymous/human2sim2robot/tree/main/human2sim2robot/ppo
https://github.com/h2s2r-anonymous/human2sim2robot/tree/main/human2sim2robot/sim_training


APPENDIX B. CHAPTER 3 APPENDIX 63

object masks, which are treated as ground truth due to SAM 2’s reliability, even under challenging

conditions. The predicted object mask, generated using FoundationPose’s pose estimate and the

known camera parameters, is compared to the ground-truth mask using the intersection over union

(IoU) metric. If the IoU falls below 0.1, FoundationPose reinitializes the pose registration process.

B.7 Full Task List

We perform experiments on the following tasks:

• snackbox-push: The objective is to push the snackbox across the table until it makes contact

with a static box. The snackbox is initialized face-down, with its position randomized within a

4 cm ⇥ 4 cm region. The task is considered successful if the snackbox contacts the static box.

• plate-push: Similar to snackbox-push, this task requires pushing a plate across the table until

it contacts the static box. The plate starts in a flat orientation, with its position randomized

within a 4 cm ⇥ 4 cm region. Success is achieved when the plate contacts the static box.

• snackbox-pivot: The goal is to pivot the snackbox from a face-down orientation to a sideways

orientation using the static box for support. The snackbox is initialized in a face-down orien-

tation, with its position randomized within a 1 cm ⇥ 4 cm region. Due to the robot’s initial

position, the snackbox cannot be substantially moved in one direction. The task is successful if

the snackbox is pivoted against the static box into a stable sideways orientation.

• pitcher-pour: This task involves grasping a pitcher by its handle, lifting it o↵ the table, and

reorienting it so that its spout is positioned above a static saucepan, simulating a pouring motion.

The pitcher starts in an upright orientation, with its position randomized within a 4 cm ⇥ 4 cm

region. The task is successful if the pitcher is lifted by its handle and correctly positioned with

its spout above the saucepan.

• snackbox-push-pivot: This task combines the snackbox-push and snackbox-pivot tasks. The

snackbox starts in a face-down orientation, with its position randomized within a 4 cm ⇥ 4 cm

region. The task consists of two sequential steps. The push task is successful if the snackbox is

first pushed to make contact with the static box, and the pivot task is successful if the snackbox

is pivoted against the box into a sideways orientation. Success is graded on a three-level scale.

The score is 0 if the push fails, 0.5 if the push is successful but the pivot fails, and 1 if both the

push and pivot are successful.

• plate-lift-rack: The objective is to lift a plate and place it into a dishrack. The plate starts

in an upright orientation, leaning against the static box, with its position randomized within

a 0.5 cm ⇥ 4 cm region. Since the plate must remain leaning against the box, its movement
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is primarily constrained along the box length. The task consists of two sequential steps. The

lift task is successful if the plate is lifted o↵ of the table, and the rack task is successful if the

plate is placed into the dishrack while maintaining an upright orientation. Success is graded on

a three-level scale. The score is 0 if the lift fails, 0.5 if the lift is successful but the rack fails, and

1 if both the lift and rack are successful.

• plate-pivot-lift-rack: This task requires a sequence of actions: pivoting a plate against

the static box, lifting it o↵ the table, and placing it into a dishrack. The plate starts in a flat

orientation next to the static box, with its position randomized within a 0.5 cm ⇥ 4 cm region.

The task consists of three sequential steps. The pivot task is successful if the plate is pivoted

against the static box to an upright orientation, the lift task is successful if the plate is lifted

o↵ of the table, and the rack task is successful if the plate is placed into the dishrack while

maintaining an upright orientation. Success is graded on a four-level scale. The score is 0 if the

pivot fails, 0.33 if the pivot is successful but the lift fails, 0.66 if the pivot and lift are successful

but the rack fails, and 1 if the pivot, lift, and rack are successful.

B.8 Baseline Details

B.8.1 Full Human Hand Trajectory Estimation

Our baseline methods typically require robot action labels for every step of the task. When working

with only a single human video demonstration, this can be done by estimating the human hand pose

in each frame and retargeting it to the robot. Specifically, we perform hand pose estimation using

HaMeR, followed by a depth alignment step (Appendix B.1). The resulting hand poses are mapped to

robot joint configurations using an inverse kinematics (IK) procedure similar to that in Section 3.2.1.

However, simply solving the IK for each frame independently and stitching the results together often

fails due to three main issues: errors in hand pose estimation, a lack of consistency/smoothness over

time, and unreachable target poses. We address these issues as follows:

1. Mitigating Hand Pose Errors. Hand pose estimation can su↵er from large errors when fingers

are occluded (Appendix B.1). To address this, we compare each newly estimated pose with the

previous pose. If their distance exceeds a threshold, we skip the current frame’s pose rather than

attempting to retarget an unreliable estimate.

2. Ensuring Joint Consistency. To maintain smooth transitions between consecutive poses, we

iteratively solve IK using the previous solution as both a default and a seed configuration. We

employ cuRobo [118] to generate 100 parallel solutions, each initialized by adding Gaussian noise

(15� standard deviation) to the previous IK solution. We then select the solution whose joint
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angles have the smallest `1 di↵erence from the previous timestep’s configuration. If even this

“best” solution di↵ers excessively, we skip that frame.

3. Handling Unreachable Targets. If the IK target is unreachable, we skip the corresponding

frame.

After applying these checks, we downsample the resulting trajectory and verify that all joint

velocities remain below the robot’s limits. If any exceed the limit, we stretch the time between suc-

cessive waypoints to reduce velocity. Although this procedure generally yields a plausible trajectory,

inaccuracies can still arise in cases of severe finger occlusion or when the hand is far from the camera.

In contrast, obtaining a reliable pre-manipulation hand pose is generally easier, as it requires only

a single frame with accurate hand pose estimation. Such a frame is easier to find because the hand

is typically not heavily occluded when it approaches the object, while the full demonstration can

include much more occlusion of the hand.

B.8.2 Replay Details

In this section, we provide additional details on the implementation of replay. First, we need to

clearly define the frames we care about. We define TA!B as the relative transformation of frame B

with respect to frame A. This means TA!C = TA!BTB!C .

Let R be the robot’s base frame, M be the robot’s middle-finger frame, C be the camera frame,

and O be the object frame. Given these four frames, we need three independent relative transforms

to fully specify this system. The camera extrinsics calibration gives us TR!C . FoundationPose

object pose estimates give us TC!O at each timestep. HaMeR with depth refinement gives us hand

pose estimates that allow us to compute the desired pose of the robot’s middle-finger frame TC!M .

This fully specifies the demonstration. This allows us to compute the object trajectory {TR!O
t }

T
t=1

and the robot’s middle-finger trajectory {TR!M
t }

T
t=1 for this demonstration. This is used to perform

the inverse kinematics procedure described above to generate a robot configuration trajectory. To

execute replay in the real world, we can directly track this joint trajectory with joint PD control.

B.8.3 Object-Aware Replay Details

For object-aware replay, at timestep t = 1, we use FoundationPose to estimate the new object pose

TR!Onew

1 , which will be similar but not identical to the initial object pose during demonstration

collection TR!O
1 . Our goal is to compute a new robot middle-finger trajectory {TR!Mnew

t }
T
t=1 that

keeps the same relative pose between the object and the middle-finger as in the demonstration.

Let TO!M be the relative pose between the object and the middle-finger at each timestep of the

demonstration. This can be computed as TO!M = (TR!O)�1TR!M . Our goal is to maintain this

same relative relationship during replay, such that TO!M = TOnew!Mnew

.
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The new middle-finger trajectory can then be computed as:

TR!Mnew

t = TR!Onew

t TOnew!Mnew

t (B.1)

= TR!Onew

t TO!M
t (B.2)

= TR!Onew

t (TR!O
t )�1TR!M

t (B.3)

To compute TR!Onew

t for t > 0, we assume the object follows the same relative motion as in the

demonstration, but starting from the new initial pose. This can be computed as:

TR!Onew

t = TR!Onew

1 (TR!O
1 )�1TR!O

t (B.4)

Substituting this into our equation for the new middle-finger trajectory:

TR!Mnew

t = TR!Onew

1 (TR!O
1 )�1TR!O

t (TR!O
t )�1TR!M

t (B.5)

= TR!Onew

1 (TR!O
1 )�1TR!M

t (B.6)

This simplifies to:

TR!Mnew

t = TRELATIVET
R!M
t (B.7)

where TRELATIVE = TR!Onew

1 (TR!O
1 )�1 = TR!O

1 TO!Onew

1 (TR!O
1 )�1 is the transformation

that accounts for the change in the initial object pose. This transformation is applied to the entire

middle-finger trajectory, e↵ectively adjusting the demonstration to the new initial object pose while

preserving the relative motion between the object and the middle-finger.

To execute object-aware replay in the real world, we can directly track this new joint trajectory

with joint PD control.

B.8.4 Behavior Cloning Details

To train a Di↵usion Policy, we need to collect a dataset of observation and action pairs. Because we

only have one human demonstration, we can generate additional demonstration data by introducing

small amounts of transformation noise to the object’s pose and then use the process above to

compute robot joint configuration trajectories with adjusted IK targets that account for this noise.

Specifically, we sample TO!Onew

1 with the same translation and rotation noise as used in RL training

and then run the object-aware replay computation above to get new object pose trajectories and

robot joint configuration trajectories. The observation consists of the vector of robot joints qt, the

palm pose ppalm
t , and the object pose pobject

t . The action consists of joint position targets relative to

the current robot position. We train with batch size 128, 50 di↵usion iterations, learning rate 1e-4,

and weight decay 1e-6, using Drolet et al. [2024]’s state-based di↵usion policy implementation.
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Allegro Hand

LEAP Hand

UMI Gripper

Figure B.2: Other Embodiments. Human2Sim2Robot can be applied to di↵erent robot embodi-
ments, including an Allegro Hand, a LEAP Hand [112] and a UMI gripper [17]. This is demonstrated
with preliminary simulation experiments for the snackbox-push task. The green box represents the
target pose of the snackbox.

B.9 Other Embodiments

Although our experiments are primarily tested on a Kuka arm and Allegro hand, we expect Hu-

man2Sim2Robot to work on other robot embodiments, as there are no aspects of the framework

that are specific to this embodiment. To validate this, we perform initial experiments demonstrat-

ing Human2Sim2Robot on a LEAP Hand [112] and UMI gripper [17] on the snackbox-push task.

Figure B.2 shows qualitative results using these embodiments, which shows that this was success-

ful without any reward tuning. The only modifications required to make this work were changing

the robot URDF and the robot configuration for retargeting via inverse kinematics (changing link

names, relative orientations, default joint configuration, collision spheres), geometric fabric controller

(link names, default joint configuration, collision spheres), and simulation environment (link names,

action/observation dimensions).
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