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Abstract

Humans are capable of adapting to novel environments quickly using prior knowledge from past

experiences. We can identify new instantiations of previously encountered object classes and easily

apply previously learned skills to these new objects, both of which current embodied AI agents

struggle with. Online reinforcement learning, where a robotic agent learns a mapping from states to

actions to maximize a reward signal, provides a potential solution by enabling robots to learn from

trial-and-error. However, current methods are sample-ine�cient, lack shaping rewards, and require

frequent resets. We propose a method to address the lack of shaping rewards using a↵ordances,

the action potential of objects, to create a dense shaping reward for online reinforcement learning.

We leverage state-of-the-art vision-language models (VLMs) to predict keypoint-based a↵ordance

representations, which we use as intermediate dense rewards for online reinforcement learning, in

addition to sparse task completion rewards. We demonstrate that dense shaping rewards speed up

online reinforcement learning for robotic manipulation, and enables robots to succeed on a variety

of object manipulation tasks, informed by human interaction priors encoded in VLMs.

iv



Acknowledgments

First, I would like express my gratitude to my research advisor, Chelsea Finn. Chelsea’s feedback on

my research directions and advice for my undergraduate career have been incredibly valuable. I am

especially grateful for the mentorship of several members of her lab over the last three years, namely

Annie Xie, Suraj Nair, Karl Pertsch, Kuan Fang of UC Berkeley’s RAIL Lab, and for the strong

community of researchers in IRIS Lab members who continually inspire me with their impactful

work and ideas. It is an honor to have been part of this lab since my freshman year and introduced

to robotics and reinforcement learning research through this group.

Next, I would like to thank my major advisor, Nick Haber, for his insights and encouragement

throughout the project. Nick provided great alternative perspectives on the project, and inspired

my interests in related areas such as curiosity, model-based reinforcement learning, and intrinsic

motivation. Our discussions have influenced my research interests in bridging human and artificial

intelligence, and his excellent teaching has been fundamental to my experience in Symbolic Systems.

I am fortunate to have learned a great deal from several other professors, including Joshua

O’Rourke, Thomas Icard, Jeannette Bohg, Dan Jurafsky, Michael Genesereth, and Mykel Kochen-

derfer. The Symbolic Systems faculty, and these faculty in particular, do a fantastic job embodying

the program’s interdisciplinary nature in the way they teach, lead discussions, and connect ideas.

Credit assignment is a di�cult task, but I believe many of my ideas are inspired one way or another

by their teachings. Special thanks also to Todd Davies and Michael Frank for leading the department

and building the Symbolic Systems community, a truly special part of my Stanford experience.

I have made many amazing friendships through the department: friends who either declared

SymSys or contemplated it, the Advising Fellows, the SymSys Society, my Big Sibs and Little Sibs

throughout the years, and all the great minds I’ve met and exchanged ideas with through shared

classes. I would especially like to thank my close friends who have seen me through it all - from my

first time tinkering with a Franka robot to the writing of this honors thesis - and have been integral

to my cherished memories of Stanford. I hope there will be many more to come.

Last but not least, this thesis is dedicated to my family. Even from home far away in Singapore,

I have felt their unwavering love and support every step of the way as I navigate life at Stanford

and beyond. It is to them that I owe all I have learned and accomplished.

v



Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Learning & Predicting A↵ordances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Foundation Models for Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Autonomous Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Key Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Learning from Diverse Human Videos 13

2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Leveraging A↵ordances for Manipulation Tasks . . . . . . . . . . . . . . . . . 14

2.1.2 Pretraining with Large, Diverse Human Datasets . . . . . . . . . . . . . . . . 14

2.1.3 Explicit Reward Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Model Training & Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Experiments & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Training A↵ordance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Simulation Tests for Dense Reward Shaping . . . . . . . . . . . . . . . . . . . 21

2.3.3 Limitations of Vision-Robotics Bridge . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Discussion & Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Extracting Shaping Rewards from Vision-Language Models for Robot Learning 27

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Reward Specification for Online Reinforcement Learning . . . . . . . . . . . . 28

3.1.2 VLM-Generated Rewards from Vision-Language Models . . . . . . . . . . . . 29

vi



3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 Model Training & Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Experiments & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Selecting Pretraining Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 In-domain Demonstrations for RoboFuME . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Online Finetuning with Dense Shaping Rewards . . . . . . . . . . . . . . . . 38

3.4 Discussion & Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Conclusions & Future Work 44

Bibliography 46

A GPT-4V Metaprompts 55

A.1 Metaprompt for Sparse Reward Generation . . . . . . . . . . . . . . . . . . . . . . . 55

A.2 Metaprompt for Waypoint Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vii



List of Figures

1.1 Sample images describing a child’s visual experience in the first 24 months. . . . . . 2

1.2 Illustration of pretraining on diverse prior experiences to infer interaction points. . . 4

1.3 Algorithmic components of SayCan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Methodology of Manipulation of Open-World Objects (MOO). . . . . . . . . . . . . 10

2.1 Example of a↵ordance model predicted outputs. . . . . . . . . . . . . . . . . . . . . . 17

2.2 Visualizing homography matrices for multiple viewpoints. . . . . . . . . . . . . . . . 17

2.3 Standard UNet architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 FiLM layers in UNet encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Example prediction from the model overlayed on the input image. . . . . . . . . . . 20

T2.1 Results of experiments in simulated D5RL environment. . . . . . . . . . . . . . . . . 22

2.6 Qualitative behavior in D5RL simulation using di↵erent reward formulations. . . . . 23

2.7 VRB model outputs on novel kitchen scenes, simulated (left) and real (right). . . . . 24

3.1 Illustration of the RoboFuME Pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 MOKA: GPT-4V-predicted point-based a↵ordances to guide robotic manipulation. . 30

3.3 Diagrammatic illustration of our method. . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Cloth Folding trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Cube Covering trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Spatula Pick-Place trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

T3.1 Results of pretraining o✏ine RL policies with three di↵erent Bridge data substs. . . 36

T3.2 Results of ablating in-domain demonstrations from pretraining data for language-

conditioned BC and o✏ine RL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Evaluation metrics of policies trained on the standard number of in-domain demon-

strations, using sparse only or dense and sparse rewards. . . . . . . . . . . . . . . . . 39

3.8 Evaluation metrics of policies trained on fewer in-domain demonstrations, using sparse

only or dense and sparse rewards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

T3.3 Results adding online finetuning with dense rewards for Spatula Pick-Place task. . . 40

3.9 Qualitative behavior of policies finetuned on sparse only vs. dense and sparse rewards. 41

viii



Chapter 1

Introduction

An enduring goal that robotics researchers have united around is a general-purpose robot: one

that can quickly explore the dynamics of a new environment and then perform a range of useful

downstream tasks. There remain many technological developments across the robotics stack, both

in hardware and software, for this goal to be achieved. In particular, one key challenge for robotics is

the ability to generalize to new objects, tasks, and environments. Humans demonstrate this ability:

consider walking into a kitchen with new objects and a di↵erent layout from one’s familiar home

kitchen. After a short exploration phase, one should be able to make a cup of tea by leveraging

information about the kitchen learned during exploration, prior understanding of how to manipulate

kettles and teabags, as well as previously learned skills like pouring and stirring. Present day

embodied agents still struggle with all of the above: intelligent exploration, semantic reasoning, and

skill transfer. The central question this work revolves around is how we can develop embodied agents

that generalize and adapt quickly to novel environments.

Turning to our understanding of human learning and adaptation is a natural attempt to grapple

with this question, as with the kitchen example above. Humans are capable of exploring novel

environments using prior knowledge, acquired both as a passive observer and as an active participant

in the real world. As a passive observer, a great deal knowledge about the world we have acquired

from observing the actions and interactions of others, whether in the real world or now through the

virtual world; consider the act of watching how-to videos on YouTube, for instance. In addition,

taking actions in the real world, as an active participant in it, is crucial for understanding action

dynamics as an agent instantiated in the world, with a particular embodiment and set of skills.

Consider the visual experience of a child: for the first 3 months of their life, a child sees a

few dominant faces and limited views of their environment. From 8 to 10 months, they see more

cluttered scenes of objects and how people around them interact with objects as their head move-

ments become more diverse. Finally, from 12 to 24 months, grasping and interaction with objects

occurs (Figure 1.1a). Notably, 12 to 18 month-old children’s category judgments are characterized

1



CHAPTER 1. INTRODUCTION 2

by numerous over- and under-generalizations, and sometimes failure to recognize known objects in

visually crowded scenes. After 24 months, however, given just one instance of a novel category and

its name, most children generalize that name in an adult-like manner [77].

(a) Sample head-camera captured images
for three di↵erent age ranges of infants.

(b) Sample images of a single object captured by
a 15-month-old infant’s head-camera during play.

Figure 1.1: Sample images describing a child’s visual experience in the first 24 months. [77]

As demonstrated by the developmental process of a child’s visual experience, there is a significant

period of largely passive observation, where a baby learns key skills like facial and object recognition,

as well as the ability to generalize to new faces and objects, before the infant takes any significant

actions. This period of passive observation is crucial for their development: infants deprived of early

visual input due to congenital cataracts that were removed at just 2 to 6 months of age faced a

permanent deficit in configural face processing [51]. From a computational standpoint, this can be

viewed as a form of pretraining on a diverse set of scenes with varying objects, environments, and

viewpoints. Through this process, besides acquiring the important skills mentioned above, infants

also learn “intuitive physics” in the real world such as gravity [34], the ability to generalize to new

objects and scenes, and important interaction priors by visually observing people around them (e.g.,

their parents) interact with objects.

At 12 to 24 months, infants begin taking their first actions such as grasping, picking, placing,

pushing, and pulling. While such skills seem primitive, these first attempts at interacting with the

world are more structured and informed than they seem; the abundance of priors acquired through

passive observation are finally being put into action. While it takes several trials over time to refine

these skills, infants require fewer trials per task than artificial agents to learn the same skills to a

similar degree of robustness. Infants also display the remarkable generalization ability to di↵erent

object types, object positions, backgrounds, and other changes to visual input, much faster and more

robustly than artificial agents. Furthermore, infants learn these skills messily without a specific order

in highly variable environments, yet they retain the fundamental skills allowing them to perform

the same tasks in new situations; today’s artificial agents still struggle with multi-task learning,

continual learning without catastrophic forgetting, and robustness to environment changes.
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Notably, there is a significant perspective shift between third-personal observations of object in-

teractions and first-personal interactions with said objects. Infants’ early attempts to refine physical

skills also seek to bridge that gap by understanding physical interaction from egocentric viewpoints

(Figure 1.1b). Besides the viewpoint shift, babies ultimately need to learn how to apply learned

priors about physics and interaction by taking actions in the real world, as opposed to just watching

how others interact with objects. Even as adults, we are constantly learning new skills and tasks.

It is a common experience to watch others perform novel tasks and interact with new objects in

the real world or via the Internet, which provides significant information about a task we try to

do ourselves. That said, no matter how many live demonstrations or YouTube videos we watch,

figuring out how to complete the same task in our own embodiment using our own skillsets requires

some degree of trial-and-error.

This two-phase approach to learning new skills - a phase of passively observing others followed

by a phase of learning through trial-and-error - inspires the o✏ine-online framework for robot learn-

ing that is presented in this thesis. The phase of passive, o✏ine observation is equivalent to the

pretraining phase of robot learning algorithms. Pretraining commonly leverages the large amount

of human and robot data that has been collected via the Internet, physical human demonstrations,

and large-scale data collection e↵orts like the Bridge dataset [24] [85] and the Open-X Embodiment

dataset [7], to learn rewards, representations, and skills in an o✏ine manner, without the agent tak-

ing actions in the real world. These informative priors serve to speed up the second phase of learning,

where learning entirely from scratch would be time-intensive and computationally ine�cient. The

second phase of online learning through trial-and-error is equivalent to the online finetuning phase

of robot learning algorithms. Specifically, we turn to reinforcement learning, a machine learning

paradigm that learns policies, or mappings from states to actions, to maximize a numerical reward

signal [80], as an implementation of online finetuning for robotic agents. The egocentric notion of

learning physical skills specific to the agent’s embodiment motivates this phase, and this work delves

into approaches to online finetuning of pretrained policies.

This thesis presents a method to address the lack of shaped rewards in online reinforcement

learning, by leveraging pretrained visual language models (VLMs). In the rest of Section 1, to lay

the foundation for this research, we explore several areas of active research, including a↵ordance

learning, foundation models for robotics, and autonomous reinforcement learning. In Section 2, we

explore an alternative method of learning shaping rewards from diverse egocentric human videos,

and discuss the benefits and limitations of this approach. Finally, in Section 3, we present our

method of extracting dense rewards for online reinforcement learning from VLMs. We demonstrate

the benefit of using a↵ordance-based waypoints and keypoints as dense rewards for faster learning

on a variety of robot manipulation tasks.
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1.1 Learning & Predicting A↵ordances

Humans are capable of adapting to novel environments quickly using prior knowledge from past

experiences or other forms of information prior to exploration time. Consider the case of entering

a new hotel room: even though this specific room and the objects within it are new to us, we can

successfully identify light switches, water taps, and remote controls despite not encountering those

exact instantiations of the objects before. We also don’t need to re-learn how to toggle light switches

or turn knobs and can easily apply previously learned skills to these new objects. What we don’t

know, and must learn via exploration, are the dynamics of this new environment - which switches

control which lights in this room, or which direction to turn the tap for hot water - that we can later

use for downstream tasks, like making a cup of tea. In such scenarios two main tasks are involved:

1. identifying specific instantiations of objects in this particular environment, and interaction

points with high likelihoods of success

2. applying the appropriate skills (learned beforehand) to those interaction points

The concept of a↵ordances, introduced by Gibson [1979] can be helpful for both of these tasks.

First introduced by Gibson to mean “what it o↵ers the animal, what it provides or furnishes ... It

implies the complementarity of the animal and the environment” [29], an a↵ordance can be under-

stood as the potential for action, ranging from actions applied to an object to how the object might

be used. Visual a↵ordances (i.e., where one should interact with this object) can help with learning

the interactive regions with high likelihoods of success. Skill a↵ordances (i.e., what one can do with

this object) can help with selecting a subset of the agent’s learned skills that would be appropriate to

apply to the given object at the identified interaction points. Pretraining can be helpful for learning

both types of a↵ordances.

Figure 1.2: Pretraining on diverse prior experiences and inferring interaction regions with high
likelihoods of success on a novel object at test time. [58]
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Prior work has demonstrated successful learning of visual a↵ordances in the form of “interaction

hotspot” representations from first- and third-person videos [58] as well as the usefulness of a↵ordance

landscapes of new unmapped 3D environments for intelligent interaction exploration [57]. These

works jointly demonstrate the value of learning useful interaction priors, specifically contact points,

by leveraging structural assumptions in diverse human behavior data from video. Both methods

involve training a↵ordance models that predict action potential for specific image segments - given

a novel scene, the model jointly predicts contact regions that are useful as well as specific actions

that are sensible to apply to those regions. The outputs of such models greatly streamline processes

of exploration and task completion by guiding embodied agents towards useful interaction points

(visual a↵ordances) and narrowing down the agent’s action space (skill a↵ordances). A↵ordance

models can thus leverage the large amount of human data at our disposal, such as Ego4D [25],

HowTo100M [55], and EPIC-KITCHENS [19].

When dealing with highly variable and unstructured data like human videos, it is necessary to

have useful heuristics to extract meaning from this data. Several works have demonstrated the

usefulness of explicitly tracking human hand poses in videos, premised on human hand interactions

being an essential source of a↵ordance information. Hand-tracking models trained extensively on

Internet data can be used o↵-the-shelf to study human hand interactions with objects at scale [75].

They can be applied to a variety of settings, such as learning from diverse human videos [12] or

in-domain human play data [86]. In Wang et al. [2023] specifically, MimicPlay uses a hand tracker

on human video data, and trains a visual encoder model that takes the current frame and goal

frame and predicts a trajectory of human hand poses, using a KL loss between human and robot

images to encourage embodiment invariance. This demonstrates both a strength and limitation of

learning strictly from human videos: while human interaction data provides strong priors to bias

robotic manipulation towards intelligent actions, the embodiment shift still remains a problem; the

most optimal way for a dexterous, five-fingered human hand to open a drawer may not be analogous

to the optimal way for a two-fingered robotic gripper to do the same task. Nonetheless, in most

works studying a↵ordance learning, hand tracking has been the dominant heuristic for extracting

structured interaction information from highly unstructured human video datasets. While some

works demonstrate zero-shot success on coarse manipulation tasks [12], most complex tasks require

some level of online finetuning [38], and the latter is the avenue this work aims to explore.

Besides being able to leverage large human video datasets and thus reducing the quantity of

robot data that needs to be collected, trained a↵ordance models are also highly versatile in appli-

cation. The predicted outputs of a↵ordance models, most commonly contact points and interaction

trajectories, can be used for a variety of robot learning paradigms, including o✏ine data collection,

goal-conditioned learning, task-agnostic exploration, and action space parameterization [8]. Other

works in the goal-conditioned learning space study the application of a↵ordances for zero-shot ma-

nipulation [12] [44]. This work primarily studies a subset of goal-conditioned learning, where the
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agent leverages a↵ordance information to learn tasks using its own experience. Another important

application, not studied in-depth in this thesis but remains highly relevant, is the use of a↵ordances

for autonomous, intelligent exploration. Exploration is a unique problem space, almost opposite

from goal-conditioned learning as it is task-agnostic. The challenge for exploration, therefore, is

designing e�cient exploration objectives, given the lack of explicitly specified tasks or goals to con-

dition policies on. In the absence of an extrinsic reward via goals, it is necessary to have intrinsic

rewards generated by the agent for intelligent exploration [64]. A variety of objectives have been

proposed in the literature: state novelty [11], prediction error [65] [74], model disagreement [66], and

uncertainty maximization [35][52].

We turn our focus to Mendonca et al. [2023] as a case study in particular, as ALAN is one

of the more recent examples of implementing curiosity-based models on a physical robot. The

approach encourages e�cient autonomous exploration using the intrinsic objective of maximizing

the uncertainty of predicted environment change, attempting to capture changes in the object space

while ignoring changes in robot position. They train their policy to choose actions that maximize

the changes in visual features of the observation space, masking out the robot so as to focus on

environmental changes. However, it is worth considering whether removing the agent almost entirely

from the intrinsic reward function is the best exploration objective. Grounding the intrinsic reward

solely in observation space is a sparse reward; if the robot gripper does not make any changes to the

environment in the duration of an episode, it will get stuck and struggle to even start the learning

process as the model is consistently getting zero rewards. The empirical result of this is that in

ALAN, the robot gripper must be positioned very close to objects of interest so that meaningful

interactions can occur, thereby enabling the learning process to start.

The notion of a↵ordance learning inherently accounts for the agent being incorporated into this

notion of exploration reward by tracking hand interactions. We hypothesize that leveraging a↵or-

dances for intelligent exploration can be an e↵ective way to densify the exploration reward and

make it more agent-centric rather than solely object-centric, by defining a reward function in terms

of what the agent should do with objects around it like in Nagarajan and Grauman [2020]. A↵or-

dance models can also be used to sample potential tasks to collect coherent exploration data, which

can then be used for goal-conditioned learning, framing a↵ordances as goals rather than actions [40].

By using object localization, contact point segmentation, and trajectory prediction, a↵ordance mod-

els can localize objects and human hands, and narrow down the space of exploration to determine

good robot end-e↵ector trajectories for intelligent interaction, creating a denser exploration reward

signal. For the broader goal of developing scalable robot learning frameworks, it is extremely useful

to drop an agent into a novel environment with novel objects and have it explore intelligently with

little test-time supervision, as such systems can autonomously collect data in new environments via

intelligent exploration, which can be used for adaptation to later complete downstream tasks.
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Given an overview of the research landscape in a↵ordance learning, there remain several open

questions. Much of the literature revolves around learning and leveraging visual a↵ordances in the

form of contact points, interaction heatmaps, hand trajectories, and so forth. There is substantially

less work in understanding skill a↵ordances, focusing on the question of how to select useful actions.

A key problem in robot learning is that it is di�cult to learn solely by trial-and-error in such a

large action space: in the reinforcement learning paradigm, should a robotic agent learn entirely

from scratch, one would observe a long period of the robot trying highly nonsensical actions before

converging on anything remotely sensible, if it even converges at all. The reason why babies and

infants don’t do this is because of the abundance of structural priors that bias them towards useful

actions they have seen being performed, which narrows the action space. Ideally, embodied agents

can learn to select a only a subset of skills that are relevant for the task and narrow down the action

space, which expedites task completion, and priors from human interaction data can be useful here.

It seems plausible that a↵ordances can be used to reduce action space sizes for robots via action

parameterization, but the exact implementation of this on a physical robot remains an open question.

Another open question is what data to use for training a↵ordance models. Most works use

large, diverse, Internet-scale datasets [8] [58] [12], though some works focus on imitation learning

using datasets collected in similar environments [86]. Using large pretrained models such as large

language models (LLMs) or vision-language models (VLMs) that are trained on Internet-scale data

are also another way to indirectly leverage diverse data, as we will explore in Section 1.2. The

question remains of whether large, diverse datasets are su�cient for learning robust, environment-

agnostic a↵ordance representations that can be used zero-shot for robotic manipulation tasks, or pure

imitation learning from data collected in the same domain is more e�cient for robot learning. The

two-phase approach of pretraining and online finetuning we propose combines both dataset types for

learning to complete robotic manipulation tasks, leveraging useful but general priors from diverse

datasets as well as data collected in the same domain but limited by the quantity and diversity of in-

domain data in a complementary fashion. We find that using pretraining on a large dataset, namely

the Bridge dataset [85], and leveraging VLMs for a↵ordance priors can speed up online finetuning

where the agent collects and learns from data in its specific environment and domain.

1.2 Foundation Models for Robotics

The rapid development of foundation models [26] in recent years has drawn significant attention

both in the academic community and beyond. The most rapidly developing foundation models

recently have been LLMs, such as the BERT [21] [47], Claude [4][5][6], LLaMA [82][28][2], and GPT

model families [67] [68] [15] [63]. More recently, we are seeing similarly exciting developments in

text-to-image CLIP-based models [69] such as the DALL-E model family [70] [71, vision-language

models [93] [56] [89] [46] [72] [45], and multimodal foundation models [62]. This surge of interest



CHAPTER 1. INTRODUCTION 8

in foundation models has arisen because they demonstrate that models trained on broad, Internet-

scale data are highly adaptable to a wide range of downstream tasks. This is evidenced in the

huge breadth of applications that have been developed such as ChatGPT [61], the fastest growing

application of all time, and numerous applications wrapped around foundation models, from code

generation [88] [42] to image generation [54] from text prompts.

Robotics is a specific downstream task of foundation models that has garnered a lot of interest

in the academic community. Ahn et al. [2022] is a widely known pioneering work in this space,

with the aim of extracting the “common-sense” knowledge about everyday tasks encoded into LLMs

for physically-grounded tasks, to broaden the set of tasks robots can plan and execute abstract,

temporally-extended textual instructions. The system consists of two main algorithmic components

(Figure 1.3): the Pathways Language Model (PaLM) determines useful actions to accomplish a goal

by calculating probability that each skill aids in completing the high-level task instruction, and a set

of a↵ordance-based value functions calculates the probability that each skill will succeed given the

current state. The overall algorithm jointly determines the probability that each skill will perform

the instruction successfully given the current state of the environment, and the most appropriate

skill is selected and the corresponding policy trained via behavior cloning or reinforcement learning is

executed. The experiments validate that SayCan can complete temporally-extended, complex tasks

from abstract instructions, and adapts selected behaviors to each environment and embodiment with

successful implementation on several robots with di↵erent action spaces.

Figure 1.3: Algorithmic components of SayCan: an LLM calculates the probability that a skill is
useful for the instruction and the value function module calculates the probability of successfully
executing eac skill to select the skill to perform. [1]
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Ahn et al. [2022] demonstrates encouraging results in training language-conditioned robotic con-

trol policies. Such approaches allow us to leverage and ground the rich knowledge and reasoning

capabilities of LLMs to enable embodied agents to complete long-horizon tasks. It also opens up a

new perspective on the pretraining process for robot learning: could we use LLMs as a pretraining

mechanism for robot policies? Previous approaches covered in Section 1 that involve learning hu-

man videos require training models from scratch on diverse Internet-scale datasets, or from human

teleoperated robot data. While the priors derived from training such a↵ordance models are rich,

the training process is costly and also requires specific heuristics to extract the most meaningful

information relevant to robotics tasks. LLMs, on the other hand, encode highly flexible and general

knowledge, and querying an LLM could be less costly than training a↵ordance models from scratch,

providing an alternative form of capturing information from diverse, o✏ine datasets.

While the results from Ahn et al. [2022] seem promising, there is a critical engineering risk that the

reasoning abilities and representations captured by LLMs are overly general for embodied tasks, and

more work is needed to properly ground the high-level plans generated by LLMs in low-level actions

for embodied tasks. In the case of SayCan, grounding was achieved through the a↵ordance-based

value function module, which connected LLM-generated high-level plans with clearly defined low-

level action primitives, each with a pretrained policy to be executed on the robot. However, assuming

access to robust pretrained skill policies for a specific embodiment is not necessarily scalable, and

policy transfer between di↵erent robot embodiments is still an open area of research [17].

Converting visual observations into language descriptions and planning in solely in the language

space loses a lot of rich information critical to scene understanding, which is a major limitation of

using LLMs for spatial planning, reasoning, and task completion. Notably, in Du et al. [2023], the

ELLM system generated inaccurate responses to whether objects matched the goal positions when

tasked with rearranging objects in a household environment to match the goal arrangement. It is

important to pay attention to the pitfalls in the household environment despite the successes in the

open-world Crafter environment. The goals for survival in an open-world environment (such as build

house, or acquire food) are fairly general and transferable, and LLMs have likely encountered such

scenarios during training and can suggest reasonable goals. However, the general knowledge encoded

in LLMs may not necessarily as beneficial for robot learning: LLMs can provide general priors for

planning and reasoning, but this generality also results in reduced specificity to the environment that

the robot is operating in, thus the general priors may not be as helpful without additional grounding.

Planning solely with language thus loses a lot of information associated with the richness of the visual

modality that is critical to most robotics applications.

The clear advantage of language is the natural interface for providing task instructions and

describing goals. That said, much of robotics research relies heavily on computer vision techniques

to accurately perceive and interact with the environment. Thus, grounding LLMs with visual input

seems to be the natural course of action for robotics applications. Several state-of-the-art VLMs, such
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as OWL-ViT [56], ODISE [89], GroundingDINO [46], and GroundingSAM [72], demonstrate highly

generalizable open-vocabulary object localization. Stone et al. [2023] demonstrates a successful

application of VLMs for robotic manipulation by interfacing policy learning with OWL-ViT for open-

vocabulary object manipulation (Figure 1.4). The VLM grounds natural language to objects as the

language instruction and current image observation is passed to OWL-ViT to localize the relevant

objects with bounding boxes. The extracted object position, along with task and skill embeddings,

are then passed to a model based on RT-1 [14], which trains a language-conditioned policy is trained

on a set of demonstrations involving diverse skills and objects, allowing generalization to new object

categories and descriptors. Therefore, using VLMs for grounding seems promising as the resultant

policy is able take the current observation as input while also being conditioned on language.

Figure 1.4: MOO trains a language-conditioned policy conditioned on object localizations from a
frozen VLM. The VLM’s object-centric representations enables the policy to generalize to novel
objects and object localizations. [78]

While preliminary VLMs succeed in open-vocabulary object idenfication and segmentation, they

still lack the extensive reasoning capabilities of LLMs, since reasoning over image inputs is signif-

icantly more complicated. There are also other limitations of using such VLMs in robot learning

pipelines, for instance generalization to di↵erent objects is still dependent on diversity of robot data,

and VLMs struggle with complex object descriptions involving spatial relations which is an impor-

tant part of reasoning for robotic tasks [78]. Ultimately, preliminary VLMs require text queries

where the objects involved are known a priori to generate bounding boxes around the requested

objects, which are provided to language-conditioned policies or LLMs for downstream reasoning.

This leaves open the question of whether it is possible to combine object localization and semantic

reasoning into a single end-to-end model, rather than passing the annotated outputs from VLMs

into a language-conditioned model. That is, can VLMs be prompted with an image and a task

instruction, rather than a set of objects, and reason about the task from the image observation?

Modern VLMs, such as GPT-4V [93] and Gemini [30], have demonstrated promising capabilities

in this direction. These VLMs can take extensive language prompts and images as inputs and reason

over images beyond object localization and segmentation, combining the reasoning capabilities of

LLMs with perception of the environment via visual inputs. A key advantage of using modern

VLMs is that it simplifies the process of translating high-level plans into low-level robot actions.

While previous works leveraging LLMs like SayCan [1] require pretrained skill policies for each action
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primitive, using modern VLMs can circumvent the issue of selecting from a suite of pretrained action

policies, by deriving rewards from image space that can be used for learning state-action mappings

via reinforcement learning. This is because VLMs, unlike LLMs, can determine success or failure

based on image observations, and this reward signal can be used to enable robots to learn via trial-

and-error, without training skill policies via imitation learning which are costly and di�cult to scale.

VLMs can also guide the learning process by generating shaping rewards, in the form of intermediate

waypoints the agent needs to move to on the way to completing the task.

Defining rewards in image space by using VLMs to determine task completion and specify in-

termediate waypoints as goals is a key contribution of our work. A major engineering challenge

is tuning the inputs to these VLMs, which are highly expressive but also opaque, to derive useful

reward signals for learning. Both language and image prompts require careful tuning to generate

accurate and meaningful outputs, as we have found that modern VLMs still struggle to some degree

with spatial reasoning. Our work explores combining preliminary VLMs and modern VLMs, as the

outputs (bounding boxes or segmentations) of preliminary VLMs can serve as more helpful inputs

to modern VLMs for semantic reasoning than raw image observations, thereby leveraging pretrained

representations in VLMs as reward predictors.

1.3 Autonomous Reinforcement Learning

Online reinforcement learning (RL) is the paradigm by which agents gathers data through interaction

with the environment, then stores this experience in a replay bu↵er and updates its policy. This

contrasts with o✏ine RL, where the agent updates its policy using previously collected data or

human demonstrations, without itself interacting with the environment. A longstanding goal is

autonomous RL: the potential of placing a robot in a real-world environment and it improves on its

own by autonomously gathering in-domain experience, which holds great promise for scalable robot

learning. Autonomous RL is the setting where the agent not only learns through its own experience,

but does not require human supervision to reset the environment between trials.

Algorithms for autonomous RL have been di�cult to implement in the real world, with the

primary challenge being sample complexity, the number of calls to the model required to achieve

acceptably good performance. In addition, there is the challenge of providing well-shaped rewards for

online exploration, as well as the di�culty of continual reset-free training, which requires significant

human e↵ort. Several works have developed systems for reset-free training to reduce or eliminate

human interventions in the online RL process [10] [92] [32] [79], but reward engineering is an open

problem as manually specified reward signals are seen as di�cult to engineer and easy to exploit.

Autonomous RL su↵ers when the reward signal is not informative enough, whether it be too

sparse, time-varying or even absent. While it may be true that hand-designing reward functions

is challenging, what if we could learn reward functions from previously collected data, or extract
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rewards from large pretrained models? Some works have attempted to learn rewards from human

feedback [81] [10], while acknowledging that these rewards are noisy and still require human inter-

vention. The large bank of o✏ine image and video datasets, as well as the high inference speed

and accessibility of large pretrained models, could potentially o↵er solutions to further reduce or

eliminate human intervention, while providing more precise and informative shaping rewards.

There has been attempts to leverage VLMs to generate rewards for online RL. Yang et al.

[2023a] finetunes MiniGPT-4 [96] to generate sparse task completion rewards on a moderate number

of in-domain demonstrations. However, these rewards are still sparse and pretraining the model

requires a substantial number of in-domain demonstrations per task, which is not only costly but

also makes the system more brittle and less robust to generalization. We also draw upon recent

work that has extracted rewards from LLMs [48] [94] and VLMs [44] [84] [50] to guide zero-shot

robotic manipulation. Instead of finetuning VLMs to define sparse task reward signals or extracting

rewards from VLMs for the zero-shot manipulation setting, we look into leveraging a↵ordance-based

representations from VLMs to tackle the dense reward shaping problem.

1.4 Key Research Questions

In light of the extensive literature around a↵ordance learning, foundation models for robot learning,

and autonomous RL, the research presented in Chapters 2 and 3 explore the following questions:

1. How can we e�ciently extract dense shaping rewards for online reinforcement learning?

2. Can pretrained object-centric representations from VLMs facilitate intelligent robotic interac-

tion and object manipulation?

3. What are relative advantages of learning representations from diverse human datasets versus

leveraging representations encoded in large pretrained models?

4. Which modality or combination of modalities is most e↵ective for representing a↵ordances for

robot manipulation tasks?



Chapter 2

Learning from Diverse Human

Videos

Teaching robots novel skills with human-in-the-loop expert demonstrations is costly. A much easier

alternative to provide action-free visual data in the form of human videos, which we already have

large amounts of from the web. Human interaction data is rich with priors about meaningful object

interactions, sensible hand poses, and useful object-specific tasks and goals. Ideally, this data can

guide embodied AI agents to learn to perform new tasks in novel environments, informing both

what to do and how to do it. This research direction draws inspiration from works that try to learn

di↵erent forms of useful information for robotic manipulation from diverse human videos: reward

functions [16] [91] [49], interaction points [58], and policies [8]. In particular, the methodology

detailed in this chapter is motivated by several concurrent trends:

1. prior work learning useful contact and interaction priors from human hand data [86] [12] [8]

2. hand-object detectors trained on Internet-scale data [75]

3. the EPIC-KITCHENS dataset [19], a large annotated egocentric human video dataset tracking

human hand interactions with kitchen objects, accompanied by EPIC-FIELDS 3D geometry

information [83] and VISOR pixel annotations [20]

This chapter aims to examine opportunities and challenges in learning from diverse human videos,

specifically the approach of explicitly tracking hand and object segmentations and trajectories. We

look at Bahl et al. [2023] in particular, and leverage the Vision-Robotics Bridge (VRB) approach

of learning contact points and action vectors from human videos. In addition, we propose adding

additional features to VRB: tracking hand and object trajectories, estimating 3D trajectories instead

of 2D, and conditioning learned policies on language, to facilitate online RL.

13
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2.1 Related Works

2.1.1 Leveraging A↵ordances for Manipulation Tasks

As explored in Section 1.1, prior work has demonstrated successful learning of interaction hotspots

[58] and other visual a↵ordances [57] from first- and third-person video datasets. These works demon-

strate that object-centric representations learned from large, diverse datasets of human interaction

data facilitated success on downstream robotic manipulation tasks, by transferring informative struc-

tural assumptions about object interactions. Bahl et al. [2023] also showed the structure of visual

and behavioral a↵ordances enables robots to perform many complex manipulation tasks, and are

compatible with a range of robot learning paradigms including goal-conditioned learning and o✏ine

data collection. However, instead of leveraging a↵ordances for zero-shot task transfer, this work

will use them for online RL, where the agent must leverage a↵ordance information to learn from

experience. A↵ordance information will serve as useful structural priors to guide the agent towards

useful behaviors that it can learn from.

2.1.2 Pretraining with Large, Diverse Human Datasets

Bahl et al. [2023] showed that learning directly from diverse, in-the-wild human videos, specifically

the EPIC-KITCHENS egocentric video dataset, is successful in enabling policy transfer across sev-

eral robot learning paradigms. In addition, Ma et al. [2023b] learned rewards implicitly via value

functions via pretraining on unlabeled human videos, while Nair et al. [2022] used visual represen-

tations learned from egocentric videos showing humans performing manipulation tasks aligned with

language annotations. Zakka et al. [2021] learns vision-based reward functions from o✏ine videos of

expert demonstrations to bridge the embodiment gap between humans and robots, leveraging tem-

poral cycle-consistency constraints to learn deep visual embeddings that capture task progression.

These works demonstrate that pretraining with large, diverse datasets, particularly human or

cross-embodiment datasets, facilitate learning useful skill and object representations and enable

knowledge transfer to guide robot behaviors. Our work utilizes this understanding, while also con-

sidering the useful and natural interface of language for task specification, leveraging both video

data from EPIC-KITCHENS as well as its accompanying VISOR language annotations. Instead

of exploring zero-shot manipulation, we instead present an explicit reward learning method, which

trains policies by optimizing learned rewards and using learned rewards to facilitate learning through

experience via online RL.

2.1.3 Explicit Reward Learning

Prior works have addressed the problem of lack of shaping rewards using human data have learned

implicit value functions [49] or visual representations or vision-based reward functions [59] [95] for
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reward specification on downstream tasks, which can be broadly categorized as an implicit reward

learning approach. Other works learn policies either directly from videos [8] or indirectly through

latent plans [86], which we refer to as explicit and implicit policy transfer respectively. However,

there have not been any proposed methods for explicit reward learning : transferring rewards learned

directly from human datasets. To better contextualize where this work is situated relative to prior

works, below is a table visualizing various previous investigations using the explicit vs. implicit

paradigms and reward vs. policy learning paradigms:

To briefly summarize these previous investigations:

• Bahl et al. [2023] (VRB) is an explicit policy transfer method that learns actionable, agent-

agnostic representations from egocentric videos by predicting contact points (as pixel heatmaps)

and post-contact trajectories (as direction vectors) on objects for zero-shot policy execution.

• [Wang et al., 2023] (MimicPlay) is an implicit policy transfer method that learns latent plans

from human play data for low-level visuomotor control trained on a small number of teleoper-

ated demonstrations.

• [Ma et al., 2023b] (VIP) is the most closely related among the implicit reward learning methods.

VIP learns implicit, goal-conditioned value functions self-supervised from egocentric human

videos to learn e↵ective visual representations, and performs zero-shot reward-specification on

unseen downstream robot tasks.

Our work builds on the explicit hand tracking method from VRB and uses it to derive rewards,

rather than policies or latent plans, to guide online RL, an approach that has not yet been rigorously

explored in the current literature. In particular, we use outputs similar to VRB (contact points and

interaction trajectories) as a reward instead of policy, and learn a robot policy for more challenging

tasks by optimizing this reward instead of zero-shot policy transfer.

To motivate the focus on explicit reward learning, our hypothesis is that directly tracking in-

formation from human behavior in-the-wild can facilitate transfer of structural assumptions from

human interaction data. Ma et al. [2023b] demonstrated that it is indeed possible to learn reward

specification entirely from out-of-domain data. Examples of such assumptions would include, for

instance, the most intuitive, safe, or e�cient ways to interact with objects, or the most sensible con-

tact points on objects, for instance the handle, rather than the blade, of a knife. Incorporating such
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structural assumptions to guide robotic actions not only improves the sample e�ciency of online

RL, but also safety, by learning from unstructured human interaction data.

We hypothesize that incorporating such structural assumptions from large, diverse human datasets

will enable more intelligent, sample-e�cient, and safe exploration in novel environments. The

broader goal of this work is to facilitate online RL accelerated by pretraining on human video data,

as priors specific to human interaction data are used for reward computation. By learning shaping

rewards for robot behavior from information directly tracked from human data, policies learned by

optimizing these rewards could then perform more complex tasks more intelligently than zero-shot

policy execution methods like Bahl et al. [2023]. Therefore, the key question of this research project

is: can we perform explicit reward learning from unstructured human video data, and use these

rewards to facilitate online RL?

2.2 Methodology

2.2.1 Approach

To extract visual a↵ordances from large-scale human videos to learn policies, our proposed method

is to train an a↵ordance model to predict contact points on objects and multi-step, post-contact hand

and object trajectories, and use them as reward guidance for online RL. This approach is inspired

by Wang et al. [2023] and Bharadhwaj et al. [2023], which explicitly track hand pose and generate

a 3D pose trajectory to learn from human videos. Contact point and post-contact hand trajectory

prediction is also used in Bahl et al. [2023] for the purposes of policy transfer. However, we use

a↵ordance information for reward shaping rather than imitation learning or policy transfer, and we

additionally track the motion of the object after contact.

The primary goal of learning from egocentric human videos to learn (a) relevant skills for a task,

represented by hand trajectories and (b) image segmentation to highlight the relevant contact points

for interaction. Then, we will implement an online RL policy using the generated outputs to learn

to complete novel tasks given an initial image of the environment. An example of model outputs

are visualized in Figure 2.1. We focus on training an a↵ordance model using diverse in-the-wild

human videos from the EPIC-KITCHENS dataset to predict the desired outputs, and then use

these outputs as dense rewards for learning.

2.2.2 Data

For model pretraining, we use the EPIC-KITCHENS egocentric video dataset, the largest egocentric

human video dataset to date that consists of egocentric audio-video recordings in native environ-

ments (i.e., the wearers’ homes) capturing all daily activities in the kitchen over multiple days, using

a head-mounted camera. The dataset spans 45 kitchens, 100 hours of full HD recording, 20M frames,
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Figure 2.1: Example of model outputs (object contact points and post-contact trajectories) given an
image and language annotation of a novel kitchen scene. Red points and bounding box correspond
to left hand trajectory and contact points respectively, green points and box correspond to right
hand trajectory and contact points respectively.

90K action segments, and 20K unique annotations. The large dataset must be preprocessed to ex-

tract the relevant information for a↵ordance learning; specifically, the goal is to generate a dataset

of post-contact hand and object trajectories as well as contact points. Left and right hand interac-

tions are processed separately, and data samples are curated by extracting (a) hand trajectories of

meaningful interactions with objects and (b) initial frames where neither of the hands are contacting

any objects to backproject future frames onto. As the egocentric camera or head position of the

user moves throughout the interaction, for each interaction trajectory, hand centroids in each frame

must be projected onto nearest preceding initial (contactless) frame using stepwise homographies

from initial frame to the corresponding frame in the trajectory. Homography matrices are estimated

using sampled points from sequences of dense frames.

Figure 2.2: Using homography matrices for projecting coordinates from a new viewpoint to an initial
frame. [90]
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Formally, for a trajectory of length T , HT,1 = HT,(T�1) ⇥H(T�1),(T�2) ⇥ ...⇥H3,2 ⇥H2,1, where

Hi,j is the homography matrix projecting points in frame i to points in frame j. Therefore, Hi,(i�1)

is estimated since the frames in the egocentric videos are dense and there are many corresponding

points in two subsequent images for an accurate estimation of the homography matrix. We can

iteratively calculate Hi,1 for all i where 2  i  T and use each Hi,1 to project the hand centroid

in frame i to frame 1, the initial contactless frame, to generate trajectories that look similar to

Figure 2.1. These preprocessing steps yield a dataset of hand and object trajectories for di↵erent

interactions with kitchen objects. The hand and object trajectories are sequences of hand and object

centroids, and the object contact points are represented by a segmentation mask. We determine the

relevant contact points on objects using o↵-the-shelf hand detector models [75] and ground-truth

segmentation data from EPIC-VISOR [20]. Contact points and post-contact trajectories are jointly

used as supervision labels for training the a↵ordance model for prediction on novel kitchen scenes.

The preliminary experiments in Section 2.3.2 are performed in simulation to verify the approach

of dense shaping rewards does indeed contribute to more intelligent interactions with kitchen objects,

before moving to real robot settings. These experiments use expert play data from D5RL, collected

in the standard Franka Kitchen environment on a Franka Emika arm. Contact points and post-

contact trajectories are extracted for reward shaping from exploratory interactions with di↵erent

objects in the expert play data. The agent’s trajectories are then optimized using Model Predictive

Path Integral Control (MPPI), as done in Ma et al. [2023b], but using explicit reward formulations

rather than implicit value functions.

2.2.3 Model Training & Evaluation

The a↵ordance model is trained in a supervised learning fashion, where the inputs are an RGB image

of the kitchen scene and a language annotation of the behavior(s) being conducted in the scene. The

labels comprise of object contact points and the post-contact trajectory describing how to interact

with the object for the trajectory beginning the input image, generated using the preprocessing steps

described previously. The RGB image and language annotations are passed through separate image

(ResNet-18 [33]) and language (RoBERTa [47]) encoders, and the corresponding encodings are con-

catenated. The concatenated embeddings are passed into FiLM-conditioned UNet [53] to generate

an intermediate language-conditioned image encoding and a segmentation mask representing the

object contact points. The FiLM-conditioned UNet has a similar architecture to the standard UNet

[73], with additional FiLM layers after the batch normalization layer in each encoder. The interme-

diate language-conditioned encoding is then passed into a Transformer model to predict sequential

trajectory outputs, using labels as ground truth for supervised learning.

At test time, given a novel static image from egocentric EPIC-KITCHENS videos, with the same

parameters as the initial backprojection frames (i.e., neither hand is in contact with any objects), the

model predicts meaningful contact points on the object as a segmentation mask and post-contact

https://github.com/stanford-iris-lab/d5rl
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Figure 2.3: Standard UNet architecture. [73]

Figure 2.4: FiLM layers are placed after the batch normalization in eacdh encoder block. The output
of a encoding block is connected to both, the next encoding block and the equivalent layer in the
decoder via skip connections. [53]

trajectories for the hand and object as sequences of centroids for both the hand and the object.

When used on images of the real robot setup, the agent is then rewarded based on how closely it

follows the predicted trajectories.

The labels extracted from the EPIC-KITCHENS dataset consist of hand and object trajectories

are sequences of hand and object centroids, and the object contact points are represented by a

segmentation mask. Therefore, the trained a↵ordance model is evaluated using the following metrics:

• Pixelwise accuracy between predicted segmentation mask and ground-truth contact point seg-

mentation mask

• L2 losses between ground-truth and predicted trajectory for hands and objects, padding se-

quences to the same length where necessary

Since there are no other models producing model outputs in the same format (object contact points

and post-contact hand/object trajectories), the performance of the a↵ordance model will be bench-

marked against the primary baseline of VRB [8], where we hypothesize that more fine-grained
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Figure 2.5: Example prediction from the model overlayed on the input image (language annotations
for visualization purposes only: task instruction is used as input to language-conditioned model).

outputs from our a↵ordance model would yield better exploratory behaviors.

For the preliminary experiments conducted in simulation in the Franka Kitchen environment

(Section 2.3.2), the trajectories generated will be evaluated using four metrics:

• Last state similarity of robot end e↵ector

• Last state similarity of target object in the interaction

• Cumulative L2 losses between the robot end e↵ector in the ground-truth and actual trajectory

over all timesteps

• Cumulative L2 losses between the target object in the ground-truth and actual trajectory over

all timesteps

2.3 Experiments & Results

2.3.1 Training A↵ordance Model

Following the heuristics outlined in Bahl et al. [2023], we generated a preprocessed dataset of 80K

meaningful trajectories after deduplication for model training, including multi-step, post-contact

hand trajectories and contact points represented by segmentation masks, as in Figure 2.1. This is a

relatively small dataset size for a supervised learning regime, as each trajectory consists of multiple

timesteps unlike VRB, which generated a direction vector per timestep, causing the dataset to be
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much smaller than anticipated. We trained the model on the dataset to test the suitability of the

model architecture, and qualitatively the outputs look sensible. An example predicted interaction

can be seen in Figure 2.5.

2.3.2 Simulation Tests for Dense Reward Shaping

The simulation experiments in Franka Kitchen serve to verify the approach of dense shaping rewards

indeed contributes to more intelligent interactions with kitchen objects, before moving to real robot

settings. Using the expert play data from D5RL, collected in the standard Franka Kitchen environ-

ment, we test several reward formulations, optimized using the MPPI trajectory optimizer. For all

the dense reward formulations below (exclusing the baseline, which is a sparse reward formulation),

reward is calculated at each timestep R
t, and the total trajectory reward R =

PT
t=1 R

t where T is

the trajectory length.

• Baseline (Sparse): Task completion reward Rtask that is set to 1 if the object is within a

certain threshold of the goal position from the expert trajectory and 0 otherwise.

• Naive reward formulations

– Robot trajectory reward, Rrobot:

R
t = Rrobot = ||orobot � gtrobot||2

which is the negative L2 norm between robot end e↵ector position at the current timestep

(orobot) and closest end e↵ector position in D5RL expert trajectory (gtrobot). Note that

finding the closest end e↵ector position in the trajectory is preferred over exact timestep

matching due to lags in robot trajectory compared to expert.

– Combined trajectory reward of robot and object,

R
t = Rcombined = (1� p)Rrobot + pRobject

where Rrobot as defined above added to negative L2 norm between current object position

and corresponding position at timestep for Rrobot, cumulative over all timesteps in the

trajectory. p is a hyperparameter that is tuned.

– Combined trajectory with added sparse task reward,

R
t = Rcombined + 10 ⇤Rtask

which adds a sparse reward bonus to incentivize reaching the goal faster.

https://github.com/stanford-iris-lab/d5rl
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• Conditional reward formulation: Reward at timestep t, Rt is set depending on if contact made

has been made at or before timestep t:

R
t =

8
<

:
Rrobot if no contact yet

Rtask + (1� p)Rrobot + pRobject otherwise

The agent is therefore incentivized to closely follow the expert’s pre-contact trajectory to reach

the object, and then to follow the trajectory of both the robot and the object in the post-

contact trajectory with variable weighting on the two terms. Similarly to before, the sparse

reward bonus incentivizes reaching the goal faster.

• Adaptive reward formulation: Reward at timestep t, Rt dynamically changes the weighting on

each of the reward terms as time progresses,

R
t = Rtask + �

t ⇤Rrobot + �
T�t ⇤Robject

where � is a discount factor, t is the current timestep, and T is the total trajectory length.

The goal of this dynamic reward formulation is to upweight Rrobot in the initial phase of the

trajectory, before contact with the object is made, and then transitioning to upweight Robject

once contact has been made to facilitate meaningful object interaction. It can be viewed as

a more elegant formulation of the previous conditional reward, but does not explicitly check

the condition of whether contact with the object has been made, and attempts to implicitly

ensure the agent learns this by upweighting Robject later in the trajectory.

The results for the task of move the kettle to the top burner are shown in Table 2.1. We see

from the quantitative results that using a conditional reward formulation with a 0.75 weighting on the

object position yielded the best quantitative results across all four evaluation metrics. Specifically,

at each timestep, the reward is set to Rrobot if no contact has been made before that timestep, and

the reward is set to Rtask +0.25 ⇤Rrobot +0.75 ⇤Robject if contact made has been made at or before

Reward Function Trajectory reward Last state
similarity
(robot)

Last state
similarity
(obj.)

Cumulative
L2 losses
(robot)

Cumulative
L2 losses
(object)

Rrobot -12.256933 0.398392 0.416386 21.440533 15.459495
Rrobot + Robject -12.222351 0.530047 0.416386 31.933604 15.459495
Rcombined+ 10Rtask -12.412558 0.289948 0.330250 27.716251 10.526182
Cond. p = 0.25 -17.913206 0.350854 0.330773 20.797026 12.850192
Cond. p = 0.5 413.380460 0.215454 0.194178 17.906603 10.637828
Cond. p = 0.75 427.145726 0.146718 0.171739 15.970397 9.706456

Adaptive, � = 0.9 418.904287 0.180724 0.175628 17.217086 10.573261

Table 2.1: Results of experiments in simulated D5RL environment.
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that timestep. The adaptive reward formulation also does comparably well across all metrics, and its

performance could be improved with additional hyperparameter tuning, namely the discount factor.

Qualitative analysis of the visualized robot trajectory also confirms that the robot behavior is

qualitatively most similar to the expert demonstrations. The sparse reward formulation resulted

in no progress towards the task, because there were no reward terms focused on the trajectory or

progress towards the goal. The näıve reward formulation tracking only robot reward follows the robot

trajectory decently, but disregards whether actual contact was made with the object and misses the

object entirely. An alternative näıve reward formulation combining the robot and object reward

struggled to even reach the object, because the negative reward from Robject during the reaching

phase made it di�cult to learn how to approach the object. Thus, reward formulations distinguishing

the pre-contact and post-contact trajectory by emphasizing Rrobot initially then transitioned to

upweighting Robject closer to task completion were the most successful.

(a) Baseline (object sparse reward only): no meaningful contact made.

(b) Naive reward formulation (robot reward only): contact missed, no progress to goal.

(c) Naive reward formulation (combined robot and object reward): no progress to the goal.

(d) Conditional reward formulation: meaningful post-contact trajectory.

Figure 2.6: Qualitative behavior in D5RL simulation using di↵erent reward formulations.

Overall, the trends in quantitative metrics in Table 2.1 and qualitative analyses of the robot

trajectories in Figure 2.6 suggest that dense shaping rewards facilitate more intelligent interactions

with kitchen objects, which validates the experimental hypothesis.
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2.3.3 Limitations of VRB

While training an a↵ordance model from scratch and leveraging its predicted outputs for dense

reward shaping, one might wonder why utilizing the Vision-Robotics Bridge (VRB) [8] which inspired

much of our method is not su�cient, given that VRB is a flexible approach amenable to several

robot learning paradigms. A potential alternative method is to simply leverage the model outputs

from VRB and use those as the dense reward shaping objective for online RL. We argue that the

current instantiation of VRB does not generate outputs that are conducive for robust and intelligent

exploration that could yield high-quality in-domain data for downstream tasks.

VRB outputs object contact points as a pixel-wise heatmap laid over the original image and per-

timestep direction vectors indicating the ideal direction of movement of the robot arm. Inspection

of the codebase reveals that VRB uses LangSAM to generate bounding boxes around objects in

the scene, and from there generates direction vectors and contact points on the cropped image of

just the object. Preliminary experiments testing the model outputs of VRB on novel kitchen scenes

taken from real-world kitchens are shown in Figure 2.7.

Figure 2.7: VRB model outputs on novel kitchen scenes, simulated (left) and real (right).

As seen in Figure 2.7, contact points are mostly predicted in the middle of the object bounding

box generated by LangSAM. This might work su�ciently well for simple actions like pushing and

pulling objects, but certainly will not work for interacting with constrained objects, for instance

opening cabinet doors where the door handle is not in the center, or lifting pots and pans with

o↵-center handles. The rightmost image in 2.7 predicts contact points that are o↵-center for hinged

cabinets and dishwashers, for instance. In addition, the direction vectors are surprisingly random,

and comparing direction vectors of several sequential image frames does not generate a continuous

action. For instance, based on qualitative analysis of VRB outputs on continuous sequences of images

such as the images on the left in 2.7 for the task open the cupboard door, both the contact points

and direction vectors do not form a coherent action over sequential timesteps. Given the limitations

https://github.com/shikharbahl/vrb
https://github.com/luca-medeiros/lang-segment-anything
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described, it is unclear how applicable VRB is o↵-the-shelf, or even with fine-tuning, for good dense

rewards for online RL. One might hypothesize that the LangSAM object detection model is doing a

significant amount of the work, and VRB could incorporate more temporal and semantic information

to improve its predictions. Our work aims to close this gap by predicting multi-timestep trajectories

and learn more semantically-informed contact points.

2.4 Discussion & Analysis

The primary finding of this research is validating the hypothesis of explicit reward learning for learn-

ing through experience, wherein rewards learned directly from human datasets are transferred to

robotic systems for online RL. We hypothesized is that directly tracking information and incorpo-

rating structural assumptions learned from human interaction data in the form of shaping rewards,

will enable more intelligent, sample-e�cient online RL in novel environments.

Our simulated experiments verified that the explicit reward learning approach successfully fa-

cilitates intelligent interaction with kitchen objects in novel environments. In particular, reward

formulations that prioritize following the pre-contact robot trajectory to reach the object, and then

prioritize following the post-contact object trajectory, were successful in guiding embodied agents to

interact intelligently with objects in a novel kitchen scene. This can be a conditional reward formu-

lation, which explicitly checks whether contact with a target object has been made and changes the

reward computation accordingly, or an adaptive reward formulation, which changes the weighting

on reward terms for the robot trajectory and the object trajectory over time. However, in spite

of these positive developments in simulated experiments, the limitations of VRB were significant

enough for us to reconsider our approach, since much of our approach was premised on its success.

Based on the shortcomings of VRB when tested on unseen kitchen environments, on top of the

fact that curating the dataset based on our heuristic of multi-step time trajectories yielded a small

dataset, it is unclear whether pursuing this direction and engineering new features, such as 3D hand

pose tracking or dense object tracking, will serve as su�ciently shaped reward signals for online RL

in real world robot setups.

Preliminary tests in the real world demonstrated di�culties in transferring to novel robot learning

setups, and required a number of in-domain demonstrations to facilitate transfer. However, there are

several works demonstrating the possibility of performing imitation learning on a modest number of

demonstrations [3] [27] [22] [86], which undermines the argument for leveraging assumptions from

human video data as either rewards or policies could instead be learned from in-domain interaction

data. The goal of learning dense rewards is to significantly reduce or eliminate in-domain demos

by enabling the agent to learn online from its own experience. Therefore, in light of the challenges

in dataset size for the a↵ordance model, the limitations of VRB, and di�culties transferring to the

real world, we reconsidered how to extract meaningful trajectories to shape rewards for online RL.
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Learning from diverse, unstructured human videos is a challenging but promising field with

significant active, ongoing research [91] [13] [9]. However, having verified the hypothesis of the

usefulness of explicit dense rewards for online learning, we explored other methods besides diverse

human videos which are challenging to extract structured data from. While human video data is

widely available, diverse, and encodes rich human priors, extracting these in the form of rewards

has several engineering challenges. On the other hand, rather than pretraining on large human

video datasets, foundation models similarly encodes general priors from highly diverse, Internet-

scale datasets. Using large pretrained models such as LLMs and VLMs could therefore be another

way to indirectly leverage diverse data. The rapid rise in accessibility and robustness of foundation

models in the course of this research led us to pursue this direction: are the priors and representations

encoded in large pretrained models useful for embodied learning?



Chapter 3

Extracting Shaping Rewards from

VLMs for Robot Learning

Recent advances in LLMs and VLMs show promising results in using “common-sense” understand-

ing to plan and reason [63] [18] [1] [69] [41]. However, even state-of-the-art large pretrained models

still struggle with understanding interactions and physical dynamics in 3D space, which is essential

to robotic control. Determining how to ground such models in the specific embodiment and envi-

ronment dynamics is also a significant engineering challenge. In order to leverage the fast-paced and

robust development of vision and language reasoning capabilities for robotics, we must address the

open question of how to tune these models to generate outputs that can guide a robotic system to

e↵ectively and intelligently interact with the physical world.

Several prior works have utilized large pretrained models for robotic control, either through

few-shot prompting or finetuning of large models to generate plans [1] [37] [36], code [42] [43], and

rewards [50] [94]. In particular, the works closest to ours in the literature leverage VLMs to generate

rewards for robotic control. However, many of these works generate sparse rewards [92] and focus on

the zero-shot manipulation setting [84] [50]. No works thus far have explored the idea of leveraging

VLM-derived rewards as shaping rewards for online RL, which has great potential for autonomous

robot learning and reducing reliance on human teleoperation or demonstration collection. We explore

leveraging a↵ordance-based representations from VLMs to tackle the dense reward shaping problem.

This chapter presents a method for open-vocabulary visual prompting to extract rewards from

VLMs for online RL. We leverage the insights about e↵ective visual prompting methods from Liu

et al. [2024] to develop a pipeline for generating dense waypoint trajectories from which dense shaping

rewards can be calculated. We integrate this dense reward computation framework into Yang et al.

[2023a], which has an established autonomous RL pipeline but with sparse rewards, to demonstrate

improvement in success rates on a variety of complex object manipulation tasks.

27
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3.1 Related Work

3.1.1 Reward Specification for Online RL

Online RL is the paradigm by which agents gathers data through interaction with the environment,

then stores this experience in a replay bu↵er and updates its policy. A specific instantiation is

autonomous RL [76], which enables robots to improve on their own by autonomously gathering

in-domain experience. There are several key challenges for implementing autonomous RL in the real

world, one of which is the challenge of providing well-shaped rewards for online exploration. Reward

specification is an open problem for pretraining for robotic control, as manually specified reward

signals are seen as di�cult to engineer.

While hand-designing reward functions is challenging, the rapid development of large pretrained

models opens up new potential methods to circumvent the traditional problems of reward engineer-

ing. Learning rewards from diverse human data, or doing so indirectly by extracting rewards from

foundation models trained on Internet-scale data, presents new opportunities in this direction. We

focus on Yang et al. [2023a] in particular, as a substantial part of our method demonstrating our

explicit reward learning hypothesis demonstrated in Chapter 2 on a real robot system builds upon

the autonomous RL infrastructure in RoboFuME.

Figure 3.1: RoboFuME Pipeline: Pretraining policies o✏ine on Internet data and a small amount
of in-domain data, and finetuning online using sparse rewards from a VLM.

RoboFuME similarly identifies the challenges of environment resets and manual reward specifi-

cation for online RL. To tackle the former challenge, RoboFuME is a reset-free fine-tuning system

that pretrains a multi-task manipulation policy from diverse datasets of prior experiences and self-

improves online to learn a target task with minimal human intervention (Figure 3.1). RoboFuME

leverages the pretrain-finetune paradigm in robot learning, by pretraining policies on a multi-task

manipulation policy from diverse datasets of prior experiences, specifically a subset of the Bridge
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dataset [85], as well as 120 in-domain demonstrations per task (50 forward tasks, 50 backward tasks,

and 20 failures). Pretraining on bridge data enables faster and easier learning of new tasks, with

in-domain demonstrations to facilitate the transfer of skills. It then finetunes online using a sparse

reward signal from a MiniGPT-4 task classifier finetuned on in-domain data [96] to learn a target

task with resets only every 15-25 episodes. Overall, RoboFuME demonstrates that calibrated of-

fline RL techniques can facilitate e�cient online finetuning of pretrained policies in the presence

of distribution shifts, and leverages VLMs finetuned on in-domain data to provide sparse reward

signals for autonomous online finetuning. More broadly, it demonstrates the success of the pretrain-

finetune paradigm for robot learning, allowing a robot to learn a new task with less human e↵ort by

leveraging Internet data and pretrained models.

In light of the rapid advances in the capabilities and accessibility of foundation models, we

considered two alternative methods to further reduce human e↵ort required in autonomous RL

pipelines. First, replacing the sparse rewards generated from MiniGPT-4 finetuned on in-domain

demos with zero-shot prompting of more powerful VLMs. The main tradeo↵ is latency, as larger

models have longer inference times than MiniGPT-4; it remains an open question if latency is worth

avoiding human data collection to finetune a task classifier. Second, instead of relying on in-domain

demonstrations to facilitate task transfer, we can pretrain policies o✏ine on Bridge data with much

fewer or no in-domain demonstrations and generate dense shaping rewards from VLMs to guide online

RL. Dense shaping rewards are formalized as waypoint trajectories that guide task completion in

new environments, therefore leveraging skills learned from o✏ine pretraining on Bridge data.

3.1.2 VLM-Generated Rewards

In Section 1.2, we discussed at length the potential of LLMs and VLMs for advancing robotic

manipulation. Despite these encouraging results, however, even state-of-the-art LLMs and VLMs

are subject to crucial limitations that prevent robotics from reaping the benefits of advances in

vision and language models. Because advances in LLMs preceded VLMs, several of the previous

works cited convert visual inputs into language descriptions, so that planning and reasoning can be

performed by more advanced LLMs. This loses a lot of crucial visual information about the scene

and physical dynamics that are essential for robotics tasks. Failing to properly ground LLMs in

physical scenes will result in di�culties completing manipulation tasks in the real world.

Liu et al. [2024] proposes a system to enable reasoning in the visual space by providing lan-

guage instructions and annotated image inputs to VLMs, thereby enabling robots to solve novel

manipulation tasks through mark-based visual prompting. MOKA leverages point-based a↵ordance

representations that ground the reasoning capabilities of VLMs in image space in real-world robot

interactions. Given a task instruction and visual observation of the scene, the model predicts a

grasp keypoint on the object representing where to contact the object, a function keypoint on the

object representing its functionality, and a target keypoint representing the goal position at the end
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of the task, as well as intermediate waypoints to guide task completion. These points captures the

essential information of the motion via a trajectory of waypoints needed for the robot to follow to

complete the task, spanning several manipulation skills.

Figure 3.2: MOKA: GPT-4V-predicted point-based a↵ordances to guide robotic manipulation.

MOKA implements a number of important preprocessing steps on the raw visual input to generate

more accurate a↵ordance predictions. First, MOKA overlays a grid on the raw image, and the

waypoints are selected from grid point coordinates. In addition, MOKA uses GroundingSAM [72] to

segment the objects of interest, and samples six keypoints on the object to grasp and six keypoints at

the goal location. The grasp and function keypoints are selected from the first six sampled points on

the object, and the target keypoint is selected from the latter six sampled points at the goal location.

This encourages the VLM to attend only to the important parts of the visual observation, based on

empirical experimentation suggesting that VLMs are much better at visual question-answering in a

multiple-choice style. That is, VLMs are generally better at choosing a point among sampled points

than predicting points via its own generation. Chain of thought prompting [87] and the order of

generating predictions also influenced output accuracy. We leverage these insights in our approach.

Liu et al. [2024] demonstrates the strength of leveraging state-of-the-art VLMs for robotic ma-

nipulation via mark-based visual prompting. Besides generating shaping rewards by leveraging

useful pretrained representations in foundation models, the incredible flexibility and generality of

these models also facilitates open-vocabulary generalization, a major challenge for robotic systems.

Foundation models encapsulate extensive prior knowledge from training on broad, diverse datasets.
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They can therefore assist with solving tasks in novel environments and handling the large diversity

and complexity of the physical world, all while using language commands as a natural interface for

users. Both LLMs and VLMs have also demonstrated successful decomposition of high-level tasks

into intermediate subtasks, which can be useful for solving complex, long horizon tasks. We leverage

similar notions of a↵ordance keypoints in our approach, though for generating shaping rewards for

online RL rather than zero-shot manipulation.

While this may be said, there remain open questions for the usage of VLMs for robotic manipu-

lation and learning. MOKA demonstrated that tuning the language instructions and meta-prompts

are critical for model performance; as state-of-the-art models are generally opaque, this requires

engineering e↵ort in tuning these prompts. MOKA also provides on average 4 to 5 waypoints per

task, which is likely not su�ciently dense for reward shaping in online RL, and it is an open ques-

tion whether VLMs can generate dense but still highly accurate trajectories for reward shaping.

MOKA uses coarse-grained depth information for its tabletop task, using the VLM to predict pre-

and post-contact height as one of “above”, “below”, or “same”. The importance of depth prediction

for robotic manipulation [31] suggests that we may need to incorporate more fine-grained depth

information, potentially by adding another camera angle besides a top-down camera angle, which

loses critical depth information unless a depth camera or depth estimator is used.

3.2 Methodology

3.2.1 Approach

We consider problems that can be formulated as a Markov Decision Process (MDP) , described as a

tuple (S,A, �, p, r, d0) where S is the state space, A is the action space and � 2 (0, 1) is the discount

factor, r(s, a) is the reward function and d0(s) is the initial state distribution d0(s). The dynamics

are governed by a transition function p(s0|s, a). The goal of RL is then to maximize the expected

sum of discounted rewards E⇡[
P1

t=1 �
t
r(st, at)]. However, r(s, a) is unknown to us. In sparse reward

approaches such as RoboFuME, r(s, a) is approximated only for a small subset Ssparse ⇢ S, making

learning di�cult because if the agent never reaches states in Ssparse, it fails to get any meaningful

reward signal for learning.

Our method approximates r(s, a) by a combination of sparse task completion reward and addi-

tionally a dense shaping reward calculated with respect to a sequence of intermediate waypoints

marking trajectory points towards the goal. This can be seen as breaking down a trajectory

into short sub-trajectories or subtasks that are more easily reachable by the agent. This e↵ec-

tively expands the set of states for which a meaningful reward signal is received by the agent i.e.

Ssparse ⇢ Ssparse+dense ⇢ S and therefore facilitates learning complex manipulation tasks.

We implement our explicit reward learning method by adding dense shaping rewards into Robo-

FuME’s online RL pipeline. We pretrain a policy but only on a subset of Bridge data relevant to each
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task, with a varying number of in-domain demonstrations. During the online finetuning procedure,

at every episode of a forward or backward task, RoboFuME saves the entire episode rollout into a

replay bu↵er, and then calculates a sparse reward per frame in the replay bu↵er. Instead, we process

the episode replay bu↵er in two steps (Figure 3.3):

1. Dense reward specification via VLM : We take the first image observation in the episode x0 and

retrieve the top-down image xd
0 and the side view image xs

0. We preprocess these images by (1)

passing x
d
0 through GroundingSAM to get segmentations of relevant objects and sample six

points on the grasped objects and six points at the target location, and (2) overlaying a grid on

x
d
0 with the twelve labeled keypoints to get (xd

0)
0 and a series of evenly-spaced labeled horizontal

lines on x
s
0 to get (xs

0)
0. We pass (xd

0)
0 and (xs

0)
0, together with a language instruction and

metaprompt (Appendix A.2) to GPT-4V, which generates several outputs but most important

among them is block sequence. This sequence is a list of tuples ([xy], [z]), where [xy] is a

grid point chosen from (xd
0)

0 representing a position in the x-y plane from top-down and [z] is

a line chosen from (xs
0)

0 representing a position in the z-axis from the side view. The dense

rewards are calculated with respect to block sequence in the next step.

2. Reward computation per frame in replay bu↵er : For each frame in the episode replay bu↵er,

we compute the positions of the robot and object in image space. We use a fitted RANSAC

regressor to compute the robot position (xrob, yrob), and an o↵-the-shelf pixel tracker [39] to

track a specific point on the object (xobj, yobj). Using these coordinates, we locate them in

3D space with both the top-down grid and side view height lines, and compute the nearest

block to each of the robot and object position in block sequence, Bt
rob and B

t
obj respectively.

Leveraging the insights from Section 2.3.2, we compute a conditional reward based on the robot

and object positions, where Rrobot is the negative L2 distance from the robot to the block after

the closest block in block sequence, Bt+1
rob , and correspondingly for the object, Bt+1

obj . We use

the next block to encourage progression towards the goal, instead of stagnating at the current

position. This is the dense reward for every frame in the replay bu↵er, which we post-process

through a modified sigmoid function to be between 0 and 1 (Section 3.3.3).

Additionally, we query GPT-4V zero-shot with the current image observation and a metaprompt

(Appendix A.1) to obtain the sparse task completion reward. We combine the dense and sparse

reward (either 0 or 1) to get the total reward for the current timestep, with scaling such that

the overall reward is between 0 and 1. We perform this reward computation for every frame

in the episode replay bu↵er, which we save out and use to learn via online RL.
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Figure 3.3: Our method consists of two components. The first (represented by the arrow (1) in the
image) leverages GPT-4V to generate a sequence of waypoints in 3D space. The second (represented
by the arrows (2) in the image) involves per timestep reward computation for each frame in the replay
bu↵er, computing reward with respect to the waypoint sequence and a sparse reward derived from
zero-shot VLM inference. The combined reward is used for online RL.

To summarize, the motivation for using dense shaping rewards generated by GPT-4V is to (1)

replace the sparse task completion reward with a signal rewarding the agent for reaching intermediate

waypoints thereby guiding task completion, and (2) reduce the reliance on in-domain demonstrations

in the pipeline by getting fairly generalizable rewards from a large pretrained VLM. This approach

is also highly flexible, as the VLM used in the pipeline can easily be replaced with a more advanced

iteration of GPT or even other model families like Gemini [30] with little or no modifications to

the metaprompt, based on preliminary experiments. Our approach uses GPT-4V as the generated

waypoints were su�ciently accurate and robust to di↵erent tasks for our experiments.

3.2.2 Model Training & Evaluation

There are two main sources of data used in our pipeline: the Bridge dataset [24] [85] as well as

in-domain expert demonstrations. We used the following tasks: Cloth Folding, Cube Covering,

and Spatula Pick-Place. The former two tasks were used in RoboFuME, and are mainly used

to demonstrate successful reproduction of RoboFuME as a benchmark and for ablation tests to

demonstrate the necessity of in-domain demonstrations for the pipeline. For Spatula Pick-Place, we

demonstrate the challenges of reproducing RoboFuME on novel tasks and the use of dense shaping
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(a) Cloth Folding forward trajectory.

(b) Cloth Folding backward trajectory.

Figure 3.4: Cloth Folding trajectories.

(a) Cube Covering forward trajectory.

(b) Cube Covering backward trajectory.

Figure 3.5: Cube Covering trajectories.

rewards to overcome this generalization problem and reduce reliance on in-domain demonstrations.

In RoboFuME, only subsets of the Bridge dataset were used to pretrain policies with language-

conditioned BC and o✏ine RL. For the two tasks also used in RoboFuME, we used the same Bridge

data subsets, mostly featuring cloth-related tasks. For the novel task, we explore the selection of

these subsets of Bridge data in Section 3.3.1. To ensure e↵ective transfer learning from Bridge

data, the camera angle and setup for the in-domain demonstrations were made highly similar to the

camera angles used in the Bridge data. We evaluated pretrained checkpoints for goal-conditioned

behavior cloning from goal images on some basic pick and place tasks from BridgeV2 [85] as a sanity

check that the camera angle was su�ciently similar.

Visualizations of the in-domain demonstrations collected for the forward and backward task of

each task category are included for Cloth Folding (Figure 3.4), Cube Covering (Figure 3.5), and
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(a) Spatula Pick-Place forward trajectory.

(b) Spatula Pick-Place backward trajectory.

Figure 3.6: Spatula Pick-Place trajectories.

Spatula Pick-Place (Figure 3.6). Policies were pretrained using language-conditioned BC and o✏ine

RL on 50 forward task trajectories, 50 backward task trajectories, and 20 mixed-mode failures. The

forward and backward task trajectories were collected with minimal multimodality and randomiza-

tion, to facilitate reset-free RL. After pretraining on Bridge and in-domain data using o✏ine RL,

policies are finetuned online using CalQL [60] for 20K steps. While RoboFuME claimed to enable

minimal resets (every 10-15 episodes), since reset-free learning was not an emphasis of our method,

we reset the model every 2 episodes to maximize useful interactions and speed up learning time.

The pretrained models (with language-conditioned BC and o✏ine RL) as well as the o✏ine RL

models finetuned online were evaluated on success out of 20 trials each of the forward and backward

tasks in each task category. Success was evaluated qualitatively by similarity to the in-domain

demonstrations collected: for Cloth Folding, the cloth had to be folded or unfolded to a degree

similar to the expert demonstrations; for Cube Covering, the entire cube had to be covered or

uncovered from the camera perspective shown in Figure 3.5; for Spatula Pick-Place, the spatula had

to be on the yellow plate (forward task) or on the left side of the plate close to where it was picked

originally (backward task).

3.3 Experiments & Results

3.3.1 Selecting Pretraining Datasets

Pretraining on the entire Bridge dataset would be computationally and practically infeasible. As

such, choosing subsets of prior datasets to train on is crucial for downstream performance. We test

this with a novel Spatula Pick-Place task that is not part of the list of RoboFuME tasks. We define

the forward task to be put spatula on plate and the backward task to be move spatula to the
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left of the plate, demonstrated in the image sequences in Figure 3.6. We consider three di↵er-

ent subsets of Bridge data. tabletop granular comprises 796 trajectories performing tasks on a

tabletop similar to the one used in our experiments. tabletop granular + toy kitchen comprises

823 trajectories, with toy kitchen trajectories specifically focusing on pick and place tasks with a

variety of objects. tabletop granular + toy kitchen + dark wood comprises 1764 trajectories,

with dark wood trajectories including some spatula pick and place tasks similar to ours, among

many other tasks. We pretrain three separate policies using o�ne RL on each of the Bridge data

combinations, as well as 120 in-domain demonstrations (50 forward task rollouts, 50 backward task

rollouts, and 20 failures), as done in RoboFuME. The results of evaluating the three policies on the

forward and backward tasks are shown in Table 3.1.

Bridge data subsets tabletop granular
tabletop granular
+ toy kitchen

tabletop granular
+ toy kitchen
+ dark wood

Forward success rate 20% 10% 5%
Backward success rate 25% 10% 10%

Table 3.1: Success rates on forward and backward task for Spatula Pick-Place using di↵erent subsets
of Bridge data, on 20 trials of each task.

From these results, we observe that increasing the size and diversity of the pretraining dataset

does not necessarily lead to better results on the task, in fact it is the opposite. Qualitative analysis

of the pick and place behavior shows a similar declining trend with more Bridge data. Even when

adding the dark wood dataset which has the same task in the dataset, the performance is the

worst among the three subset combinations. This demonstrates the importance of pretraining data

selection for the performance of the eventual policy.

We noted that the success rates for the novel Spatula Pick-Place task was much lower than the

reported success rates in Yang et al. [2023a], suggesting issues with generalization capabilities of

the pipeline. We also observed that RoboFuME codebase not only pretrains on Bridge data, but

also in-domain demonstration data that is upsampled by 8x to be proportional to the size of Bridge

data. This could explain the observed results that increasing the size of pretraining Bridge datasets

causes worse performance, because it dilutes the upsampled in-domain data. This demonstrates that

the RoboFuME pipeline is heavily dependent on in-domain demonstrations to succeed. We test the

e↵ect of these demonstrations in the next set of experiments.

3.3.2 In-domain Demonstrations for RoboFuME

While RoboFuME has demonstrated interesting results in reducing human e↵ort in reward engineer-

ing and resets, there is a notable cost incurred with collecting in-domain demonstrations for each new

task. In-domain demonstrations are crucial for policies pretrained o✏ine to succeed in task transfer
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to the new environment, as we will see in the following experiments. In-domain demonstrations are

also crucial for finetuning MiniGPT-4 to yield accurate sparse task completion rewards.

To avoid confounding generalization issues and to verify successful reproduction of the pipeline,

we picked two tasks in the RoboFuME task suite that performed well, Cloth Folding (Figure 3.4) and

Cube Covering (Figure 3.5). On both tasks, language-conditioned policies pretrained with behavior

cloning (BC) and o✏ine RL had decent success rates, which improved with online finetuning. To

test the necessity of in-domain demonstrations for the success of the pipeline, for each task we

pretrained four policies: language-conditioned BC on Bridge data and in-domain demonstrations,

o✏ine on Bridge data and in-domain demonstrations, language-conditioned BC on Bridge data only,

and o✏ine RL on Bridge data. We used the same Bridge data subsets as RoboFuME for each task,

with newly collected in-domain demonstrations using our setup. We evaluated the four policies on

the forward and backward tasks for each task category, and the results are shown in Table 3.2.

We successfully reproduced the results of RoboFuME for the BC and RL policies trained on both

Bridge and in-domain data (see the first two columns of Table I in Yang et al. [2023a]). However,

removing in-domain demonstration data from the pretraining dataset was catastrophic for policy

learning, resulting in zero successes for both task categories on forward and backward tasks. This

confirms the heavy reliance of the RoboFuME pipeline on in-domain demonstrations.

BC bridge
+ indomain

RL bridge
+ indomain

BC bridge
only

RL bridge
only

Cloth Folding
forward
success rate

65% 70% 0% 0%

backward
success rate

40% 50% 0% 0%

Cube Covering
forward
success rate

35% 55% 0% 0%

backward
success rate

50% 65% 0% 0%

Table 3.2: Success rates on forward and backward task for Cloth Folding and Cube Covering tasks,
on 20 trials of each task.

In-domain demonstrations are crucial for both aspects of the RoboFuME pipeline: pretraining

policies with language-conditioned BC or o✏ine RL as well as finetuning the task classifier that yields

sparse rewards. It is not scalable to collect in-domain demonstrations for every new task we care

about. Furthermore, the pipeline required in-domain demonstrations to meet several constraints,

such as minimizing multimodality in the demonstrations, and if at evaluation or during finetuning

there are any di↵erences in the environment (e.g., lighting changes, changes in object position,

changes in background), the system is very likely to fail. Overall, these experiments demonstrate

reliance on in-domain demonstrations for transfer to new environments makes the system highly
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brittle, evidenced by the ablation experiments conducted that pretrained policies only on Bridge

data without the in-domain demos resulting in zero success on all tasks. Therefore, while RoboFuME

reduces human e↵ort in reward specification and resets, collecting demonstrations is still a bottleneck

for this method, both in human e↵ort and in the fragility of the system.

3.3.3 Online Finetuning with Dense Shaping Rewards

Demonstrating success rates on the cloth tasks comparable to the RoboFuME results was a positive

indicator for successful reproduction of the online RL pipeline. However, based on the results in

Table 3.1, failure to achieve similar results on the Spatula Pick-Place pretrained o✏ine RL policy on

Bridge data and high-quality in-domain demonstrations, regardless of the Bridge data subset used,

suggests that generalizing the online RL pipeline to new tasks is challenging.

Our ablation experiments in Table 3.2 demonstrated that without in-domain data, all policy

variants struggled to get any meaningful learning signal on every task. Furthermore, a preliminary

experiment finetuning the o✏ine RL policy pretrained only on Bridge data demonstrated challenges

learning with sparse rewards achieves barely any increase in success rates (column 6 of Table 3.3).

Therefore, we hypothesized that with dense shaping rewards, policies pretrained on both dense and

sparse rewards would struggle to learn during online finetuning, and we were unlikely to achieve

meaningful success rates on Spatula Pick-Place without in-domain demonstrations.

Given the di�culty achieving similar success rates to RoboFuME tasks by the language-conditioned

BC and o✏ine RL policies pretrained on Bridge and in-domain data for Spatula Pick-Place (Table

3.1), it is possible that even policies pretrained on in-domain data may struggle to learn using Robo-

FuME’s online RL pipeline. The goal of the following experiments, therefore, is to see how much

online finetuning with sparse rewards can improve the somewhat lackluster results of the o✏ine RL

policy pretrained on Bridge and in-domain data. Subsequently, we test whether dense reward shap-

ing can achieve higher success rates with the same number of steps of online finetuning, thus showing

demonstrable acceleration of the online finetuning process. Therefore, to help online RL pipelines

like RoboFuME generalize to new tasks, adding dense rewards can help, especially since the dense

rewards are obtained using VLMs which demonstrate significant generalization capabilities.

The full approach for dense reward shaping is detailed in 3.2.1, with the implementation that

once the waypoint trajectory is generated using GPT-4V, we use the centroid of each grid tile in the

trajectory and interpolate it with some randomness to create a denser trajectory of pixel coordinates

in image space. We use calculate the negative L2 distance between the current robot position and

the target waypoint (initialized as the first waypoint in the VLM-generated sequence), changing the

target waypoint to the next one in the sequence to encourage progress along the trajectory. We

pass each distance through a modified tanh function, so rdense = 0.5(1 � tanh (�(dt � ')), where

dt is the negative L2 distance between the robot position and the target waypoint at timestep

t, and scaling factor � and o↵set ' are hyperparameters. We set � = �0.02 and ' = 120 for
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the results reported in Table 3.3. This ensures the dense reward stays between 0 and 1, with

values closer to 1 when the robot trajectory is closer to the interpolated VLM-generated waypoint

trajectory. What distinguishes trajectories that stay close to the VLM-generated trajectories and

truly good trajectories that complete the task is the sparse task completion reward, which e↵ectively

doubles the reward (since sparse reward is either 0 or 1) for trajectories that are close to the

VLM-generated trajectory and also complete the task. We set the final reward for each timestep

r = 0.5(rdense + rsparse) to scale the overall reward to between between 0 and 1 also.

We conduct some preliminary experiments in simulation to investigate the e↵ects of finetuning

with a dense reward. We further investigate the claim of whether using a dense reward formulation

can reduce the reliance of the policy on in-domain demonstrations during policy pretraining. The

results of the simulation experiments for policies using the standard number of in-domain demon-

strations, including the reproduction of the RoboFuME pipeline, can be seen in Figure 3.7:

(a) Standard quantity of in-domain demonstrations, sparse reward only (RoboFuME).

(b) Standard quantity of in-domain demonstrations, dense and sparse rewards.

Figure 3.7: Evaluation metrics of policies trained on the standard number of in-domain demonstra-
tions, using sparse only or dense and sparse rewards.

We see here that adding the dense reward generally performs comparably. To determine whether

one of these reward formulations, sparse only vs. dense and sparse, is more adversely a↵ected by

reducing the number of in-domain demonstrations during pretraining, we conduct two simulation

experiments for policies using fewer in-domain demonstrations, for which the results are shown in

Figure 3.8. We see that these also perform comparably with each other and with the previous

experiment using the standard number of in-domain demonsrtrations. The dense and sparse reward

formulation reaches higher success rates slightly faster despite fewer in-domain demonstrations. Due

to the dense rewards in simulation only being approximated with a single waypoint at the target

location, we believe a denser waypoint trajectory should help with learning on the real robot, with
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the simulation experiments verifying that adding dense rewards at least does not hurt or inhibit

learning. The fact that RoboFuME also uses 100 in-domain demonstrations also suggests that for

the real robot setup, the quantity of in-domain demonstrations is more important, more so than the

simulation environment.

(a) Fewer in-domain demonstrations, sparse reward only.

(b) Fewer in-domain demonstrations, dense and sparse rewards.

Figure 3.8: Evaluation metrics of policies trained on fewer in-domain demonstrations, using sparse
only or dense and sparse rewards.

For policy learning for the real robot setup, we pretrain policies for Spatula Pick-Place on the best

performing subset of Bridge data from the experiments in Section 3.3.1, namely tabletop granular

only. The o✏ine RL policy pretrained on Bridge and high-quality in-domain demonstration data

achieved 25% on both the forward and backward tasks. We finetune this policy online for 20K steps

using only VLM-generated sparse rewards, with resets every 2 episodes to maximize meaningful

online interactions, which is equivalent to the the RoboFuME method. Separately, we finetune this

policy online for 20K steps using both VLM-generated sparse rewards and dense rewards calculated

with respect to a VLM-generated waypoint trajectory, again with resets every 2 episodes. The

results are shown in Table 3.3.

Spatula
Pick-Place
Task

BC bridge
only

RL bridge
only

BC bridge
+ indomain

RL bridge
+ indomain

RL bridge
only
+ online FT
(sparse)

RL bridge
+ indomain
+ online FT
(sparse)

RL bridge
+ indomain
+ online FT
(sparse+dense)

forward
success rate

0% 0% 30% 25% 5% 40% 45%

backward
success rate

0% 0% 20% 25% 0% 35% 40%

Table 3.3: Results of experiments finetuning pretrained policies online for 20K steps with dense
rewards for Spatula Pick-Place task.
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We see that after finetuning with VLM-generated sparse rewards (the full RoboFuME pipeline),

the performance of the o✏ine RL policy pretrained on Bridge and in-domain data increases from

25% to 40% for the forward task and 25% to 35% for the backward task. While this is still not

as high as the success rates of the cloth tasks, the increase in success rate with finetuning using

sparse rewards is comparable to a Pot Pick-Place task in the original RoboFuME paper, and both

Pick-Place tasks are considerably harder than the cloth tasks. After finetuning with VLM-generated

sparse rewards and dense shaping rewards, the performance of the o✏ine RL policy pretrained on

Bridge and in-domain data further increases to 45% for the forward task and 40% for the backward

task. This is comparable to the success rate of RoboFuME in the Pot Pick-Place task after finetuning

with 30K steps using only sparse rewards.

While the increase in performance finetuning with both dense and sparse rewards compared to

using just sparse rewards is not extremely significant just based on success rate, the qualitative be-

havior observed was better, with representative image sequences demonstrating policy performance

on the real robot shown in Figure 3.9. The policy finetuned with sparse rewards, while fairly suc-

cessful, commonly demonstrated the behavior shown in Figure 3.9a where the spatula was dropped

onto the plate from a high height, rather than lowering and placing the spatula as done in the

demonstrations. The robot gripper also continues moving to the right rather than hovering above

the placement point, which is indicative of fairly frequent coincidental successes. On the other hand,

the policy finetuned with dense rewards, while slightly more performant success rate-wise, demon-

strated better qualitative behavior shown in Figure 3.9b, lowering the spatula onto the plate and

hovering above the placement point, as done in the demonstrations. This is likely due to dense

rewards shaping the behavior to be more similar to the trajectory generated by GPT-4V.

(a) Qualitative behavior of policy finetuned only on sparse rewards: Robot drops spatula on the plate from
a height and continues moving rightward.

(b) Qualitative behavior of policy finetuned only both dense and sparse rewards: Robot lowers and place
spatula on the plate and subsequently hovers above the placement position.

Figure 3.9: Qualitative behavior of policies finetuned on sparse only vs. dense and sparse rewards.



CHAPTER 3. EXTRACTING SHAPING REWARDS FROM VLMS 42

Therefore, the quantitative results in Table 3.3 and qualitative results in Figure 3.9 collectively

suggest that dense shaping rewards extracted from GPT-4V can help facilitate generalization of

online RL pipelines like RoboFuME to new tasks where only using sparse rewards would not be able

to generalize as well. Policies finetuned with dense rewards may also be less brittle when reducing

the number of in-domain demonstrations during pretraining, though more real-robot experiments

finetuning policies pretrained with fewer demonstrations are needed to verify this. Further hyper-

parameter tuning in the reward computation algorithm (namely scaling factor � and o↵set ' in the

reward formulation above) as well as in the CalQL algorithm could further improve the success rate

of policies finetuned with dense and sparse rewards. Future work can also investigate whether it

is possible to use fewer in-domain demonstrations when finetuning with dense and sparse rewards

without significantly hurting the policy’s performance, as done in the simulation experiments.

3.4 Discussion & Analysis

Our experiments have presented several takeaways on the opportunities and challenges of au-

tonomous online RL pipelines such as RoboFuME, and the potential of mark-based visual prompting

of VLMs like GPT-4V for improving generalization capabilities in robot learning pipelines. From our

experiments selecting di↵erent pretraining datasets for the novel Spatula Pick-Place, the selection

of prior o✏ine datasets is incredibly important for downstream success of the pretrained policy. It

might be unique to the RoboFuME pipeline that smaller prior datasets are better to avoid diluting

the in-domain demonstration data, and the optimal selection of prior data could have greatly im-

proved both the pretrained policy and finetuned policy’s performance. However, it is still surprising

that including demonstrations of the exact task being evaluated on (though in a di↵erent environ-

ment) does not help with task completion. More research into extracting relevant data from prior

datasets can alleviate this issue.

The experiments also demonstrate the challenges of relying on high-quality in-domain demon-

strations with low multimodality to successfully pretrain policies for online RL. Such pipelines are

made much more brittle and less robust to generalizing to new tasks, objects, and environments.

It is possible that a combination of selecting a highly task-relevant subset of the Bridge dataset

facilitating good transfer to the current task and improved hyperparameter tuning for CalQL could

have enabled the system to learn via online finetuning with dense rewards without needing any

in-domain demonstrations at all, but this would require much more extensive further exploration

in this direction in both pretraining data selection and hyperparameter search for online RL. A

broader goal of subsequent research in this area would be to develop online RL methods that are

much less reliant on or completely eliminate the need for in-domain demonstrations, and able to

more e↵ectively extract useful priors from o✏ine datasets like Bridge datasets during pretraining,

in addition to improving finetuning methods.
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That being said, our final experiment demonstrated that dense shaping rewards extracted from

VLMs can indeed help to speed up online RL, and facilitate generalization to new tasks where only

relying on sparse rewards may not do as well. Though it was necessary to pretrain the policy on

both Bridge and in-domain data, using a combination of dense and sparse rewards were able to

facilitate faster and better learning than just sparse rewards. Our reward formulation could be

a possible modification to existing finetuning methods to make them more robust to changes in

tasks, objects, and environments. We have demonstrated the benefits of dense shaping rewards

extracted from VLMs, and open up new avenues of exploration for new ways of leveraging the

generalization capabilities of VLMs to enhance the robustness of robot learning systems. That said,

both RoboFuME and this method are bottlenecked by the speed of inference of VLMs; finetuning

for 20K steps took about 3-4 human hours with resets. Reducing the latency of online RL methods

will allow finetuning for many more steps in a shorter period of time. Future work in this area can

look to using VLMs, more sophisticated pretraining methods, or other approaches to scale e�ciently

to a greater diversity of tasks, objects, and environments.



Chapter 4

Conclusions & Future Work

In this thesis, we present two research projects that leverage prior data to develop embodied agents

that generalize and adapt quickly to novel environments. We leverage the notion of a↵ordances, the

action potential of objects, to extract relevant representations and priors from human data to guide

robot behaviors, specifically enabling robotic agents to learn through their own experience.

Concretely, in Chapter 2, we explored how to extract a↵ordances from diverse human video

datasets to facilitate intelligent robot interactions in novel environments. We did this by training

a language-conditioned model from scratch on interaction trajectories and contact points extracted

from the EPIC-KITCHENS egocentric human video dataset to predict hand and object trajectories

given a novel image and language instruction. However, the limitations of the VRB model demon-

strated empirical challenges with training a predictive model on egocentric human video data. That

said, we were able to successfully verify the hypothesis that dense rewards were helpful in completing

tasks in the D5RL simulated environment, which left open the question of the most e↵ective and

generalizable way to generate dense shaping trajectories to guide online RL.

In light of the rapid advances in capabilities of multimodal foundation models, in Chapter 3,

we explored leveraging state-of-the-art VLMs to extract dense shaping rewards for online RL. In

contrast to prior works that do majority of planning and reasoning in language space, we highlight

the benefits of extracting a↵ordance representations in the visual domain, representing a↵ordances

for robotic manipulation tasks in image space. Compared to training an a↵ordance model from

scratch on diverse human videos, leveraging representations encoded in VLMs is much more e�cient

and generalizable, allowing us to indirectly leverage the large, Internet-scale datasets that these

models are trained on. Building on an existing pipeline for autonomous RL, and taking inspiration

from visual prompting methods that enabled zero-shot robotic manipulation, we used mark-based

visual prompting to extract a↵ordance representations from GPT-4V in the form of keypoints and

waypoints, and used the dense waypoint trajectory as a shaping reward for online RL.

While the goal of eliminating in-domain demonstrations for pretraining policies was ambitious,

44
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we were able to demonstrate that using dense shaping rewards from VLMs facilitated improved

generalization to new tasks which existing online RL pipelines were not robust to and finetuning with

only sparse rewards were insu�cient. This suggests that pretrained object-centric representations

from VLMs can facilitate intelligent robotic interaction for learning through experience. Together,

these methods contribute insights to tackling the lack of shaping rewards for online RL, and more

broadly aim to improve the sample e�ciency of online RL methods enabling robots to learn through

trial-and-error with minimal human supervision. We also contribute insights to the pretrain-finetune

paradigm that is becoming increasingly popular for robot learning, especially the importance of

selecting task-relevant subsets of pretraining data and methods to accelerate finetuning procedures.

Several open questions remain in this research direction. First, truly robust learning techniques

will scale with more data. We have not seen this trend in robotics thus far, and developing approaches

that scale without selecting subsets of previously collected human or robot data will be paramount

for robotics to see similarly rapid advancements like with language and vision. A↵ordances are just

one formalization to extract meaningful representations for robot learning; developing pretraining

techniques that can e↵ectively leverage a variety of data sources - real robot data, human data, simu-

lator data, and out-of-domain Internet data - will be crucial to advancing the field. Next, in addition

to autonomous robot learning through trial-and-error, improving autonomous robot data collection

will be hugely important in facilitating e↵ective transfer to new environments. Perhaps pretraining

solely on out-of-domain data is an overly ambitious goal, but collecting in-domain demonstrations

under strict constraints is also not scalable. Developing pipelines that pretrain policies on out-

of-domain data, including leveraging foundation models, but can also scalably and autonomously

collect high-quality in-domain data for pretraining could help with downstream task completion in

novel environments, which can improve the e�ciency of learning to perform new tasks via online

RL. Finally, we have explored leveraging dense shaping rewards to e↵ectively finetune policies on-

line, but there are several other ways for robotic agents to e↵ectively extract or infer rewards from

the environment or human feedback to guide task completion. Learning rewards for online policy

improvement without manually engineering or specifying reward signals will be important for robots

to continually and autonomously learn to adapt and generalize.

Researchers in the robotics community commonly debate about whether doubling down on data,

algorithms, benchmarks, or simulations is the key to solving robotics. However, unlike language and

vision, the unparalleled diversity in embodiments, action spaces, environments, tasks, and objects

presents a huge challenge to robotics such that there is no silver bullet solution. This research

presents the insight that e�ciently collecting and curating the right data from a variety of sources for

pretraining, as well as finetuning techniques that facilitate adaptation to a specific embodiment and

environment without forgetting information learned during pretraining, are essential for a scalable

end-to-end framework for robot learning. A mixture of these crucial ingredients may then unlock

unprecedented capabilities in harnessing deep learning techniques for robotics.
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Appendix A

GPT-4V Metaprompts

A.1 Metaprompt for Sparse Reward Generation

Given the task instruction and the image, has the task been completed in this image from the

camera’s perspective? Answer ’yes’ or ’no’, do not explain your reasoning.

A.2 Metaprompt for Waypoint Generation

Note: The metaprompt below was largely inspired by the metaprompt using by MOKA [44], with some

modifications to generate the dense waypoint trajectory required for our project. We have tested this

metaprompt with a variety of models, including Gemini Pro and GPT-4o, and this metaprompt is

suitable for use with other models with comparable performance to GPT-4V, as of June 2024.

Describe the robot gripper’s motion to solve the task by selecting pre-defined keypoints and

waypoints. The input request contains:

- The task information as dictionaries. The dictionary contains these fields:

* ‘instruction’: The task in natural language forms.

* ‘object grasped’: The object that the robot gripper will hold in hand while executing the

task.

* ‘object unattached’: The object that the robot gripper will interact with either directly or

indirectly via ‘object grasped’.

- An image of the current table-top environment captured from a top-down camera, annotated

with a set of visual marks:

* candidate keypoints on ‘object grasped’: Purple dots marked as ‘P[i]’ on the image, where

[i] is an integer.
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* candidate keypoints on ‘object unattached’: Green dots marked as ‘Q[i]’ on the image, where

[i] is an integer.

* grid for waypoints: Grid lines that uniformly divide the images into tiles. The grid equally

divides the image into columns marked as ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’ from left to right and rows

marked as 1, 2, 3, 4, 5 from bottom to top. * start point of gripper: Red dot marking the starting

position of the gripper.

* start point of ‘object grasped’: Blue dot marking the starting position of ‘object grasped’.

- An image of the current table-top environment captured from a side view camera, annotated

with a set of visual marks:

* horizontal gridlines: Grid lines that uniformly divide the image from bottom to top, where

each line represents height from the tabletop. The grid equally divides the image into segments

marked as ‘z1’, ‘z2’, ‘z3’, ‘z4’, ‘z5’, ‘z6’, ‘z7’, ‘z8’ from bottom to top.

* start point of gripper: Red dot marking the starting position of the gripper.

* start point of ‘object grasped’: Blue dot marking the starting position of ‘object grasped’.

The motion consists of a grasping phase and a manipulation phase, specified by ‘grasp keypoint’,

‘function keypoint’, ‘target keypoint’, ‘pre contact waypoint’, ‘post contact waypoint’.

Please note: In the grasping phase, the robot gripper sequentially moves to the ‘pre contact waypoint’

and grasps ‘object grasped’ at the ‘grasp keypoint’. In the manipulation phase, the robot gripper

moves to ‘post contact waypoint’ first, then moves the ‘function keypoint (or ‘object grasped’ if

‘function keypoint’ is ‘’) to ‘target keypoint’, performing a motion trajectory that completes the

task instruction by first completing the grasping phase then the manipulation phase.

More specifically, the definitions of these points are:

- ‘grasp keypoint’: The point on ‘object grasped’ indicates the part where the robot gripper

should hold.

- ‘function keypoint’: The point on ‘object grasped’ indicates the part that will make contact

with ‘object unattached.’

- ‘target keypoint’: If the task is pick-and-place, this is the location where ’object grasped’ will

be moved to. Otherwise, this is the point on ’object unattached’ indicating the part that will be

contacted at the end of the motion by ‘function keypoint’, or the robot gripper (if ‘function keypoint’

is ‘’).

- ‘pre contact waypoint’: The waypoint in the free space that the robot gripper moves to before

making contact with the ‘grasp keypoint’.

- ‘post contact waypoint’: The waypoint in the free space that the robot gripper moves to after

making contact with the ‘grasp keypoint’, before moving ‘function keypoint’ (or ‘object grasped’ if

‘function keypoint’ is ‘’) to ‘target keypoint’.

The response should be a dictionary in JSON form, which contains:

- ‘grasp keypoint’: Selected from candidate keypoints marked as ‘P[i]’ on the image. This will
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be ‘’ if and only if ‘object grasped’ is ‘’.

- ‘function keypoint’: Selected from candidate keypoints marked as ‘P[i]’ on the image. This will

be ‘’ if and only if ‘object grasped’ or ‘object unattached’ is ‘’ or the task is pick-and-place.

- ‘target keypoint’: Selected from keypoint candidates marked as ‘Q[i]’ on the image. This will

be ‘’ if and only if ‘object unattached’ is ‘’.

- ‘start block’: A tuple ([pos], [height]): [pos] is the tile where the robot gripper (marked by a

red dot) is located, which is selected from candidate tiles ‘[x][i]’ marked on the first top-down image,

where [x] is the column index as a lower letter and [i] is the row index as an integer. [height] is the

line representing the height of the robot gripper, which is selected from candidate lines ‘z[i]’ marked

on the second side view image, where [i] is the line index as an integer.

- ‘grasp block’: A tuple ([pos], [height]): [pos] is the tile where the robot gripper grasps the

object at ‘grasp keypoint’, which is selected from candidate tiles ‘[x][i]’ marked on the first top-down

image, where [x] is the column index as a lower letter and [i] is the row index as an integer. [height]

is the line representing the height of the grasped object, which is selected from candidate lines ‘z[i]’

marked on the second side view image, where [i] is the line index as an integer.

- ‘target block’: A tuple ([pos], [height]): [pos] is the tile where ‘target keypoint’ is currently

located in, which is selected from candidate tiles ‘[x][i]’ marked on the first top-down image, where

[x] is the column index as a lower letter and [i] is the row index as an integer. [height] is the line

representing the height of the target location, which is selected from candidate lines ‘z[i]’ marked on

the second side view image, where [i] is the line index as an integer.

- ‘block sequence’: A list of tuples of the form ([pos], [height]), where [pos] is selected from

candidate tiles ‘[x][i]’ marked on the first top-down image, where [x] is the column index as a lower

letter and [i] is the row index as an integer, and [height] is selected from candidate lines ‘z[i]’ marked

on the second side view image, where [i] is the line index as an integer. The list of tuples represents

the locations that the robot gripper should move to sequentially to complete the task. Remember

that the robot gripper first completes the grasping phase by moving to ‘pre contact waypoint’ and

grasping ‘object grasped’ at the ‘grasp keypoint’. Next, in the manipulation phase, the robot gripper

moves to ‘post contact waypoint’ first, then moves the ‘function keypoint (or ‘object grasped’ if

‘function keypoint’ is ‘’) to ‘target keypoint’, performing a motion trajectory that completes the

task instruction by first completing the grasping phase then the manipulation phase. Think about

this step by step: the list should begin with ‘start block’, navigate to ‘grasp block’, and end with

‘target block’. The elements of the list should be tuples of the form ([pos], [height]), where [pos]

is selected from candidate tiles ‘[x][i]’ marked on the first top-down image, where [x] is the column

index as a lower letter and [i] is the row index as an integer, and [height] is selected from from

candidate lines ‘z[i]’ marked on the second side view image, where [i] is the line index as an integer.

Furthermore, as ‘block sequence’ is sequentially generated starting with ‘start block’, from the last

element ([pos1], [height1]) in the sequence so far, the next block ([pos2], [height2]) is generated as
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follows: first generate [pos2] by choosing one of the eight tiles surrounding the current tile [pos1] (up,

up-left, up-right, left, right, down, down-left, down-right), then generate [height2] by choosing the

line above, below, or the same as the current line [height1]. The next tile should be chosen in a way

that the resultant motion in 3D can be followed by the robot gripper to first complete the grasping

phase, then after a successful grasp, complete the manipulation phase, thereby completing the task

instruction with collision avoidance and all proper contacts made. This sequence generation process

continues until the last tile in the sequence so far ‘target block’, which is when the robot gripper’s

motion is completed. Double check that for each consecutive block of format ([pos], [height]), [pos] is

reachable from the previous [pos] by moving either up, up-left, up-right, left, right, down, down-left,

down-right, and [height] is reachable from the previous [height] by moving up, down, or staying the

same.

- ‘pre contact height’: The height of ‘pre contact waypoint’ as one of the two options ‘same’

(same as the height of making contact with ‘target keypoint’) or ‘above’ (higher than the height of

making contact with ‘target keypoint’).

- ‘post contact height’: The height of ‘post contact waypoint’ as one of the two options ‘same’

(same as the height of making contact with ‘target keypoint’) or ‘above’ (higher than the height of

making contact with ‘target keypoint’).

- ‘target angle’: Describe how the object should be oriented during this motion in terms of

the axis pointing from the grasping point to the function point. Think about this step by step.

First analyze whether this axis should be parallel with or perpendicular to the motion direction

and the table surface respectively to better perform the task, then choose the axis orientation from

one of these strings based on the motion direction: ‘forward’ (toward the top side of the image),

‘backward’ (toward the bottom side of the image), ‘upward’ (perpendicular to and away from the

table surface), ‘downward’ (perpendicular to and towards the table surface), ‘left’ (towards the left

side of the image), ‘right’ (towards the right side of the image). e.g., if the axis is parallel to the

table surface and perpendicular to the motion direction, and the motion direction is backward, then

the axis direction should be either ‘left’ or ‘right’; if the axis is perpendicular to the table surface

and parallel to the motion direction, and the motion direction is upward, then the axis direction

should be either ‘upward’ or ‘downward’.

We will first provide one in-context example, which contains the input (the corresponding task

instruction and pair of input images (top-down and side view)), and the correct response. Then we

will provide a new task instruction and pair of input images (top-down and side view) and ask for

the corresponding response based on the in-context example.

Think about this step by step: First, choose ‘grasp keypoint’, ‘function keypoint’, and ‘target keypoint’

on the correct parts of the objects. Next, determine which block the robot gripper is in (‘start block’),

which block the ‘grasp keypoint’ is located in (‘grasp block’), and which block the ‘target keypoint’
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is located in (‘target block’). Then generate ‘block sequence’ (starting with ‘start block’, mov-

ing through some sequence of blocks to ‘grasp block’, then moving through another sequence of

blocks and ending with ‘target block’) and choose ‘pre contact height’, ‘post contact height’ accord-

ingly such that the robot gripper’s resultant motion of ‘pre contact waypoint’! ‘grasp keypoint’ !
‘post contact waypoint’ then moving ‘function keypoint’ (or ‘object grasped’ if ‘function keypoint’

is ‘’) to the ‘target waypoint’ in 3D completes the grasping phase first then the manipulation phase

and proper contacts will be made. Remember that in the first top-down image, the columns are

marked as ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’ from left to right, and the rows are marked as 1, 2, 3, 4, 5 from

bottom to top; in the second side view image, the lines are labeled ‘z1’, ‘z2’, ‘z3’, ‘z4’, ‘z5’, ‘z6’, ‘z7’,

‘z8’ from bottom to top. Explain the reasoning steps.
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