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Abstract

We consider two models of asymmetric processes corresponding to Markov processes. We study the
behavior of two different models at equilibrium: first where particle number stays constant, and second
where particles enter and exit the model at certain rates. We observe probability distributions of particle
configurations at equilibrium, as well as other properties such as average particle speed.

1 Introduction

Asymmetric processes refer to processes in which particles can move left or right with different prob-
abilities, resulting in different particle configurations. These are found throughout mathematical biology,
chemistry, and physics for their ability to model actual particle behavior.

We consider two cases of asymmetric processes. First is the cyclic case, where we have k particles on a
closed chain of N positions, where each position can be occupied by at most one particle. Since this is a
closed chain, we represent each state configuration as a circular chain of positions (see Figure 1). The number
of particles in the circular chain is the same at every step of the Markov chain; no particles enter through
the left or leave the system through the right. We fix an asymmetry parameter, q ∈ [0, 1], which corresponds
to the probability that a particle moves in left (counterclockwise) instead of the right (clockwise). Consider
two states σA and σB : we say that σB is directly accessible from σA if and only if they differ by one particle
to the right, or clockwise in a circle. As a result, the number of states is finite, specifically

(
N
k

)
for the cyclic

asymmetric process.

Figure 1: Cyclic Asymmetric Processes: For the asymmetric process where N = 8 and k = 4, σA is accessible
from σB since they differ by one particle in σA (in the red box) moving one position clockwise in the cycle.

Second is the acyclic case with boundaries, we again have a chain with N positions, but now with bound-
aries where particles enter from the left and exit from the right. We fix two parameters α, β ∈ [0, 1], which
we can think of as rate of entering and rate of exiting the chain respectively. For simplification purposes, we
assume q = 0, implying total asymmetry, meaning particles can only move to the right. Unlike the cyclic
case, the number of particles is variable so we have 2N particle configurations for the acyclic asymmetric
process.
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(Irreducibility), and 3.5.1 (Average Particle Density).
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‡Alice wrote the proof in Section 3.3 (Double Stochasticity) and 3.5.2 (Average Speed).
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Figure 2: Illustration of the acyclic asymmetric process, as a linear chain (rather than a cyclic chain, as in
the cyclic asymmetric process).

2 Markov Chains and Markov Processes

Definition 1. Let S be a finite set. A sequence of random variables X0, X1, X2, ... is called a Markov
chain if for any n ≥ 1 and any x0, x1, ..., xn ∈ S,

P (Xn = xn|X0 = x0, ..., Xn−1 = xn−1) = P (Xn = xn|Xn−1 = xn−1)

In other words, this means that the behavior of the chain at time n, conditioned on the past timesteps,
depends only the state of the chain at time n− 1. The set S is called the state space of this Markov chain.

Definition 2. Let S be a finite set and the sequence X0, X1, X2, ... be a Markov chain on S. A Markov
chain is time-homogeneous if for any x, y ∈ S, the quantity P (Xn = y|Xn−1 = x) does not depend on n.
In other words, the probability of transition from x to y remains the same at every point of time. Since S
is a finite set, we may assume without loss of generality that it is the set 1, ..., N for some N .

Definition 3. For a time-homogeneous chain on S, the N ×N matrix P where pij = P (X1 = j|X0 = i) is
the transition matrix of the Markov chain.

Definition 4. A stochastic matrix is any matrix with non-negative entries and each row sums to 1.

Note that if P is a transition matrix for some Markov chain, it is easy to see that P is a stochastic matrix.
This is because the entries of P (corresponding to probabilities of transitioning from one state to another)
are non-negative and each row sums to 1 because for any i,

∑
j∈S pij =

∑
j∈S P (X1 = j|X0 = i) = 1. This

is equivalent to summing a conditional probability mass function over the entire (finite) set of possible values.

Let X0, X1, ... be a time-homogeneous Markov chain on a finite state space S with transition matrix P .
A probability distribution on S is a set of values π such that πi ≥ 0 for each i ∈ S, and

∑
i∈S πi = 1. In

other words, π is a row vector in RM , where M is the size of the state space S.

Definition 5. A probability distribution π on S is an stationary (or invariant or equilibrium) distri-
bution for a time-homogeneous Markov chain on a finite state space with transition matrix P if πP = π.
Specifically, for each i ∈ S,

∑
i∈S πiPij = πj .

This paper aims to explore the properties of the stationary distribution of particle configurations. We aim
to show that in the cyclic case, once the stationary distribution is reached at some configuration Xi in the
Markov chain, all states are equally likely, meaning the uniform distribution is the stationary distribution.

3 The Cyclic Asymmetric Process

3.1 Modeling Cyclic Asymmetric Process

We consider the model for the cyclic asymmetric process as follows: we select one position j, where each
position has an equal probability of being selected; e.g. with probability 1

N . We will represent a pair
of adjacent positions with a 1 if there is a particle present and a 0 otherwise, where the particle selected
at random to move is underlined (see Figure 3 for a visual mapping of particle configurations to 0-1 notation).

We describe the model algorithmically as follows, with Figure 1 as a visual aid:

• Choose a position with index i ∈ {1, ...N} uniformly at random. This means that an arbitrary index i
has probability 1

N of being chosen.

• If there is a particle at index i, look at index i+ 1:

– If 11 (there is a particle at index i+ 1): do nothing

– If 10 (there is no particle at index i+ 1): move particle at index i to index i+ 1
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Figure 3: Converting cyclic diagrams to 0-1 tuple representation, for all four possible tuple configurations.
0 represents a blank position and 1 represents a position with a particle.

• If there is no particle at index i, look at index i+ 1:

– If 00 (there is no particle at index i+ 1): do nothing

– If 01 (there is no particle at index i + 1): move particle at index i + 1 to index i with
probability q

There is a 1
N probability of choosing any position i. If we choose a position with a particle and with

i + 1 = 0 we move with probability 1. Hence we we have a 1
N ∗ 1 = 1

N chance of moving from a state σA

to state σB , where σB differs from σA by exactly one particle moved by one position to the right/clockwise.
Thus we say P (A,B) = 1

N . Similarly, if i = 0 and i + 1 = 1, we move with probability q, so we have
1
N ∗ q = q

N . So we say P (B,A) = q
N .

In the case of the cyclic asymmetric process, the state space of the Markov chain representing the asym-
metric process we described in Section 1 is the set of all particle configurations for a chain with N positions.
Out of the N positions in the chain, we need to choose k positions to place the k particles, so the size of the
state space is

(
N
k

)
. Furthermore, since for every state (represented by a row in the Markov matrix) there must

be a transition to another state in the next timestep (including back to itself), the sum of probabilities in
each row must sum to 1. Therefore, the transition matrix P is a stochastic matrix with rows that sum up to 1.

As a concrete example, consider the cyclic asymmetric process where N = 4 and k = 2. The state space
of all possible particle configurations for this process is illustrated in Figure 2, where the size of the state
space is M =

(
4
2

)
= 6.

Figure 4: State space for the cyclic asymmetric process with N = 4 and k = 2.

Now, using the algorithm we described above, we can compute the transition matrix P . Consider the case
where the current particle configuration is σ1. Recall that Pij (the i-jth entry of the matrix P ) represents
the probability of transitioning from state σi to state σj . We can work out each of the entries as follows,
ending with the probability that we remain in the current state σ1:

1. There is a probability of 1
4 that position 1 is chosen and that particle moves to the right/clockwise

resulting in configuration σ2, so P12 = 1
4 .
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2. There is no way to transition from state σ1 to state σ3 by moving a single particle in either direction,
so P13 = 0.

3. There is a 1
4 probability that position 4 is chosen, and seeing that there is a particle in position 1

(to the right of the chosen position), there is a probability q that the particle in position 1 moves
left/counter-clockwise to position 4 resulting in σ5, so P15 = q

4 .

4. There is a 1
4 probability that position 2 is chosen, and seeing that there is a particle in position 3

(to the right of the chosen position), there is a probability q that the particle in position 3 moves
left/counter-clockwise to position 2 resulting in σ5, so P15 = q

4 .

5. There is a probability of 1
4 that position 3 is chosen and that particle moves to the right/clockwise

resulting in configuration σ6, so P16 = 1
4 .

6. There are two cases in which we remain in the same configuration σ1:

(a) Case 1: Position 2 is chosen. This occurs with probability 1
4 . We further know that the particle

in position 3 moves left/counter-clockwise to position 2 with probability q (see above for the
transition from σ1 → σ4), so it stays in position 3 with probability 1−q. So the overall probability
that position 2 is chosen and the particle in position 3 stays in its position is 1−q

4 .

(b) Case 2: Position 4 is chosen. The argument is similar to Case 2, but looking at the particle in
position 1 instead. Likewise, the overall probability that position 2 is chosen and the particle in
position 3 stays in its position is 1−q

4 .

Collectively, the probability that we remain in the same state configuration σ1, P11 = 1−q
4 × 2 = 1−q

2 .

We have therefore worked out the first row of the transition matrix P , and doing a similar process for the
remaining rows will generate the entire 6×6 Markov matrix P representing the transitions between different
states in the state space. This will yield the following transition matrix for the Markov chain:

P =

σ1 σ2 σ3 σ4 σ5 σ6


σ1

1−q
2

1
4 0 q

4
q
4

1
4

σ2
q
4

3−q
4

1
4 0 0 0

σ3 0 q
4

1−q
2

1
4

1
4

q
4

σ4
1
4 0 q

4
3−q
4 0 0

σ5
1
4 0 q

4 0 3−q
4 0

σ6
q
4 0 1

4 0 0 3−q
4

3.2 The Markov Process is Irreducible

Figure 5: Irreducibility of the Markov Process: For the asymmetric process where N = 8 and k = 4, σA is
accessible from σB because we can follow the described algorithm to reach any arrangement of the particles
across the positions.
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Definition 6. A state j of a Markov chain is accessible from a state i in n steps if P
(n)
ij > 0 for some n ≥ 1

where P (n), the transition matrix raised to the n-th power.
Note that it is possible that j = i, as it is possible for a state to be accessible from itself (in this case, if the
chosen particle does not move right or left).

Definition 7. A Markov chain on a finite state space is irreducible if every state j is accessible from every
state i.

Our goal is to show that the model is irreducible: for all states x, y, there is some time step t such that
P t(x, y) > 0, i.e. that any from any possible state I can reach another possible state with positive probability
in a finite number of steps. The intuition for this is as follows: for any number of particles k < N , there
must be at least one open position i. With a positive probability, I select the occupied position i − 1, and
then move that particle to position i. Now I am guaranteed that position i− 1 is open, so another particle
can move there, and so on. In this way we can always move our particles to some rotation to any other state.

Consider the following algorithm: We represent the positions of the particles in a state σA with positions
xi as the vector (x(1), ..., x(k)), numbering our particles clockwise. We seek an algorithm that allows us to
move to any new state σB , with particles yi represented by the vector (y(1), ..., y(k)). In both cases, each xi

or yi ≥ i. For example, we one arrangement with k = 4 and N = 8 could be (1, 0, 1, 1, 0, 0, 1, 0). Call this
state σA, with our goal state σB having the arrangement (0, 1, 0, 1, 1, 0, 1).

We will start by shifting all of our particles so they are clumped together at the end of our chain. We
will begin with the particle x(k), moving it to position N . Then we iteratively move our particles x(k − i)
to positions N − i with i from 1 to k, respectively. In this way, we move all of our particles to be adjacent in
the rightmost positions; we call this σK . This can be done from any starting state σA, since, as described,
we can always move one particle at a time to an open space and move up the space it previously occupied.
Using our previous example, we’d now have (0, 0, 0, 0, 1, 1, 1, 1).

Now, we will preserve the structure of keeping our particles adjacent to each other, but move them all to
the right. We will move the particle at position N − i to position k− i with i from 0 to k− 1. For example,
the particle in position N moves forward around to position k, freeing up space for a particle in N − 1 to
move to k−1 and so on. Now we are in state σL, where our particles are now adjacent to each other over the
right side. Using our same example, this could look like (1, 1, 1, 1, 0, 0, 0, 0). These two intermediate states,
σK and σL are essential transition states that allow us to orient the particles such that we can go from any
starting state to any following state. As we have shown, from any starting state we can reach σL, and now
we will show that from σL we can reach any ending state.

From here, we will follow the same process given in the intuition described above. We can move particle
x(k), now in position k, into the next unoccupied position repeatedly, until we reach position y(k), e.g. the
most clockwise occupied position in σB . We’re now guaranteed to have at least one new position open, in
which we can move particle x(k − 1) into y(k − 1), and so on in the same manner until we reach σB . Now
we have that we can reach any ending state from σL. Altogether, we can reach σK from any starting σA,
we can always move from σK to σL, and we can move from σL to any goal state σB using the algorithm
described. Therefore we have shown that from any starting state we can reach any goal state, so the process
is irreducible. Importantly, this works for any q value, including q = 0, since our algorithm involves only
moves to the right.

3.3 The Markov Matrix is Doubly Stochastic

Definition 8. A doubly stochastic matrix is any matrix with non-negative entries and each row and each
column sums to 1. Specifically,

∑M
j=1 Pji = 1, where M =

(
N
k

)
for the cyclic asymmetric process.

We want to show that our permutation matrix P is doubly stochastic, or more specifically
∑M

j=1 Pji = 1.
Note that there are M permutations with n spots and k particles. Pji = P (σ(j) → σ(i)) or the probability
of jumping from σj to σi. We know that every state σj either remains at state σj , has one particle move one
position to the right/clockwise, or has one particle move one position to the left/counter-clockwise. Then,

M∑
j=1

Pji = Pii +
∑

a particle in σ(j) moves right

Pji +
∑

a particle in σ(j) moves left

Pji

Consider the first case where we analyze Pii. σi → σi when a particle in σi is selected and it is followed
by a particle, or when an empty spot in σi is selected and it is followed by an empty spot, or when an empty
spot in σi is selected and it is followed by a particle (which does not jump with probability 1 − q). Then,
using our earlier notation,

Pii =
1

N
·#{positions in σ(i) : 00}

+
1

N
·#{positions in σ(i) : 11}

+
1

N
·#{positions in σ(i) : 01} · (1− q)

Now, to calculate Pji where j ̸= i, consider the following two possible changes in particle configuration:
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1. We analyze Pji where a particle (followed by an empty spot) in σj moves one position right/clockwise
to σi. This means σj : 10 → σi : 01. Then,

Pji =
1

N
·#{positions of σi : 01}.

2. We analyze Pji where a particle in σj moves left to σi. This occurs when we choose an empty spot
followed by a particle (where the particle moves into the empty spot with probability q). This means
σk : 01 → σi : 10. Then,

Pji =
q

N
·#{positions of σi : 10}.

Thus, combining the cases k = i and k ̸= i, the total probability of σj → σi is

Pki =
1

N
·#{positions in σ(i) : 00}

+
1

N
·#{positions in σ(i) : 11}

+
1− q

N
·#{positions in σ(i) : 01}

+
1

N
·#{positions of σi : 01}

+
q

N
·#{positions of σi : 10}

We know that the number of particles followed by an empty spot is equivalent to the number of empty
spots preceded by a particle, as every pair of 10 can be counted by the first particle or the second empty
spot. Additionally, the number of empty spots preceded by a particle is equivalent to the number of empty
spots followed by a particle. If there are no empty spots in a state, there are 0 positions of both 10 and 01.
If there are empty spots in a state, every consecutive chain of empty spots has exactly one particle before
and after it, so every chain accounts for one empty preceded by a particle and one empty spot followed by
a particle. We can demonstrate this with the diagram below:

Figure 6: Demonstrating symmetry between tuple configurations 10 and 01

The red, blue, and orange chains each have contribute one position to 10 (at positions 8, 4, 1 respectively)
and one position of 01 (at positions 9, 2, 6 respectively), so there are three empty spots preceded by a
particle and three empty spots followed by a particle. #{positions of σi : 10} = #{positions of σi : 10} =
#{positions of σi : 01}. Then, we have

M∑
j=1

Pji =
1

N
#{positions in σ(i) : 11}

+
1

N
#{positions in σ(i) : 00}

+
1

N
#{positions in σ(i) : 10}

+
1

N
#{positions in σ(i) : 01}

=
1

N
#{position in σ(i) : (11 or 00 or 10 or 01)}

We see that 11 or 00 or 10 or 01 are all the possible N spots. Then, the total probability is 1
N ×N = 1.

3.4 The Markov Process Converges to the Uniform Distribution

From Section 3.2, we have the following lemma:
Lemma 1. The Markov chain for the cyclic asymmetric process is irreducible.
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In addition to irreducibility, another important property of Markov chains we explore here is that of
aperiodicity, defined as follows:
Definition 9. The period of a state i ∈ S is the greatest common divisor of the set of all n ≥ 1 such that

P
(n)
ii > 0. If there is no such n, the period if ∞.

Mathematically, the period of a state σ(i) is

ρ(σ(i)) = gcd{n ≥ 1 : P
(n
ii > 0}

Definition 10. A Markov chain is aperiodic if all states have period 1, i.e., ρ(σ(i)) = 1 for all states σ(i).

Lemma 2. The Markov chain for the cyclic asymmetric process is aperiodic.
Proof: The broad intuition for why the Markov chain representing the asymmetric process is aperiodic
is because at any step of the Markov chain, there is always a nonzero probability that a particle that is
chosen to transition will stay at its current state. More concretely, we have that for the cyclic asymmetric
process, it is always the case that the transition matrix of the Markov process has positive diagonal elements,
i.e., Pii = P (σ(i) → σ(i)) > 0. This is because, as outlined in our proof of doubly stochasticity in Section 3.2,

Pii =
1

N
#{positions in σ(i) : 00}

+
1

N
#{positions in σ(i) : 11}

+
1

N
#{positions in σ(i) : 01} · (1− q)

Because it is assumed that q < 1, then we know that 1 − q > 0, and for any state σ at least one such
position will exist so one of diagonal entries of P will be greater than or equal to 1. In fact, all Pii are nonzero
since i is arbitrarily chosen. That is, any particle configuration will definitely have a tuple of either 00, 11,
or 01, and having the tuple 10 implies at least one of the first three tuples is present in the configuration,
as per our symmetry argument in Section 3.2. This is also evidently true for any P (n) (higher powers of
P ), since we take the greatest common divisor of 1 and other integers. As such, it is always the case that

P
(n)
ii = P (n)(σ(i) → σ(i)) > 0 and the period ρ(σ(i)) = 1 for all states, so our Markov chain is aperiodic. □

Theorem 1. (Basic Limit Theorem of Markov Chains) An irreducible and aperiodic Markov chain converges
to a unique stationary distribution.

Proposition 1. The Markov chain representing the cyclic asymmetric process converges to a unique sta-
tionary distribution.
Proof: This proposition follows from Lemma 1 and Lemma 2 above. Having shown that the Markov
chain representing cyclic asymmetric processes is both irreducible and aperiodic, we claim the Basic Limit
Theorem of Markov chains theorem applies to cyclic asymmetric processes. Therefore, since our Markov
chain for cyclic asymmetric processes is irreducible and aperiodic, the stationary distribution is unique,
meaning regardless of the initial state of the Markov chain, it will always converge to that unique stationary
distribution. □

From Section 3.3, we have the following lemma:
Lemma 3. The Markov matrix for the cyclic asymmetric process is doubly stochastic.

Lemma 4. A Markov chain with a doubly stochastic transition matrix has a stationary distribution that is
uniform.
Proof: Consider the doubly stochastic Markov matrix P of a Markov chain. Suppose our Markov chain
as M many states. Consider the uniform distribution on the state space π(i) = 1

M , for i = 1, ...,M . Notice
that since P is doubly stochastic, by Definition 6 for double stochasticity in Section 3.2 we have

∑
j Pji = 1.

Therefore,

(πP )(i) =
∑
k

π(j)Pji =
∑
j

1

M
Pji =

1

M

∑
j

Pji =
1

M
= π(i)

Since for all i we obtain that π(i) = (πP )(i), the uniform distribution is a stationary distribution for the
chain, based on Definition 5 for the stationary distribution in Section 2. □

Proposition 2. The Markov chain representing the cyclic asymmetric process has a stationary distribution
that is uniform.
Proof: From Lemma 3 that the Markov matrix for the cyclic asymmetric process is doubly stochastic,
and Lemma 4 that doubly stochastic Markov processes have a stationary distribution that is uniform, the
proposition naturally follows.

We have finally reached the main conclusion for the cyclic asymmetric process. With the two proposi-
tions, we can prove the following theorem:
Theorem 2. The Markov chain for the cyclic asymmetric process, with a doubly stochastic transition
matrix, must converge to the uniform distribution, which is the only unique stationary distribution.
Proof: By Lemmas 1 and 2, we proved Proposition 1 that the Markov chain representing the asymmetric
process has a unique stationary distribution. By Lemma 3, we showed Corollary 2 that the uniform distribu-
tion is a stationary distribution for the Markov chain representing the asymmetric process. Combining these
two propositions yields the conclusion that the Markov chain for the cyclic asymmetric process must uniquely
converge to the uniform distribution. This means that at equilibrium, all states have equal probability. □
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3.5 Implications for Average Particle Density and Speed

3.5.1 Average Particle Density at Equilibrium

We will explore the notion of average particle density at equilibrium, to set up the notion of average
speed. Since we have N positions and k particles, our density intuitively is k

N . However, we will build a more
robust understanding of this by relying on combinatorics and probability theory. This will help set up the
intuition to prove the average speed at equilibrium. Let d be a random variable representing the presence
of a particle at a specific position, either 1 or 0. Then d is an indicator variable that takes on the value 1
with probability p and 0 with probability 1− p, where p is the probability of finding a particle at position i.
Then we can represent the average density at position i as the probability that there is a particle at position
i. That is,

< di >= E[particles at position i] = P (there is a particle at position i)

We know that there are
(
N
k

)
possible states for a given N and k, where any state has an equal chance of

occurring, hence there is 1

(Nk)
chance of any σJ occurring. To find the average density, our goal is to answer:

considering all of the possible states, how many of them contain a particle in position i? To find this, we
must count all of the possible states σ such that position i has a particle, and multiply this sum by the
probability of a single state occurring. So we have

< di >=
1(
N
k

) ·#{states: position i has a particle}

To find the number of states such that position i has a particle, we return to combinatorics. We know that(
N
k

)
represents our total state space because it is the number of picking k unordered particles from N total

possibilities. If position i has a particle, this means that we have fixed one position by placing one particle
there. So our state space should consider one fewer particle and number of positions: we can now choose
k − 1 unordered particles among N − 1 positions. Therefore,

#{states: position i has a particle} =

(
N − 1

k − 1

)
Putting this together,

< di >=
1(
N
k

) ·#{states: position i has a particle} =

(
N−1
k−1

)(
N
k

) =
k

N

Hence our average density is k
N .

3.5.2 Average Speed at Equilibrium

We define the average speed at equilibrium at position i as follows:

< speedi >= E[displacement at next time step]

or the expected value of displacement in the next time step expressed as

△x

△T
=

displacement during △T

△T
.

We know that our setting is discrete and the smallest time step is 1 so △T = 1. We know that a state only
changes if we select a particle followed by an empty spot or an empty spot followed by the particle. Then,
a particle at position i, moves one step right with probability 1 if there is an empty spot at position i + 1,
and it moves one step to the left with probability q if there is an empty spot at position i− 1. We have:

< δ >i= E[displacement from position i] = 1
∑

σi,i+1=10

n(σ)− q
∑

σi−1,i=01

n(σ).

We know that given states i and i + 1 of σ are a particle and empty spot, respectively, we have k − 1
particles to choose from N − 2 spots left. There are

(
N−2
k−1

)
possible arrangements of this, where every σ

has probability 1

(Nk)
of occuring. Similarly, given states i − 1 and i of σ are an empty spot and particle,

respectively, we have k− 1 particles to choose from N − 2 spots left. This also has a 1

(Nk)
·
(
N−2
k−1

)
probability

of occurring. Then,

E[displacement at next time step] =
1(
N
k

)(N − 2

k − 1

)
− q(

N
k

)(N − 2

k − 1

)
=

(1− q)(k)

N
× N − k

N − 1

so the average speed is (1−q)k
N × N−k

N−1 .

4 The Acyclic Asymmetric Process

4.1 Modeling the Acyclic Asymmetric Process

We consider a different model for the acyclic case, still a chain with with N positions, but now with
endpoints. We no longer consider a cycle but a linear chain, where particles enter from the leftmost position
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and exit from the right. We now fix three parameters: q, α, β ∈ [0, 1], which we can think of as the probability
of a chosen particle moving to the left instead of the right, the rate of entering and rate of exiting the chain
respectively. A simple case that we will later investigate fixes q = 0, implying total asymmetry, meaning
particles can only move to the right. Because particles can enter and exit the model, we now have a variable
number of particles in the system. In total, we have 2N possible states or particle configurations, since for
each position there is either a particle or there is not.

Figure 7: Acyclic Asymmetric Processes: For the asymmetric process where N = 8, the state below is
accessible from the state above because they differ by exactly one particle in the state above (in the red box)
moving one position to the right.

As with the cyclic case, we use a similar tuple notation to before, where 0 indicates the absence of
a particle in a particular position, 1 indicates the presence of a particle in a particular position, and the
underlined position is the chosen position. We describe the model algorithmically as follows:

• Choose a position with index i ∈ {0, ...N} uniformly at random. This means that an arbitrary index i
has probability 1

N+1 of being chosen.

• If i ∈ {1, ..., N − 1}, then:

– If there is a particle at index i, look at index i+ 1:

∗ If 10 (there is no particle at i+ 1): move particle at index i to index i+ 1

∗ If 11 (there is a particle at i+ 1): do nothing

– If there is no particle at index i, look at index i+ 1:

∗ If 00 (there is no particle at i+ 1): do nothing

∗ If 01 (there is a particle at i+1): move particle at index i+1 to index i with probability
q

• If i = 0, then:

– If there is a particle at index 1: do nothing

– If there is no particle at index 1: insert at particle at index 1 with probability α

• If i = N , then:

– If there is a particle at index N : remove the particle at index N with probability β

– If there is no particle at index N : do nothing

For two states σA and σB where σA and σB differ by only a single particle moving to the right, we see
that this model generates the probabilities indicated in the problem statement. Specifically, the probabilities
P (A,B) = 1

N and P (B,A) = q
N where the particle chosen to move in A has index i ∈ {1, N −1}. Note some

edge cases in particular:

• If A had no particle at the position with index 1 and B has a particle at the position with index
1 (i.e., the originally empty position at position with index 1 had a particle inserted): P (A,B) =
α
N , P (B,A) = 0.

• If A had a particle at the position with index N and B has no particle at the position with index N
(i.e., the particle originally at position with index N was removed): P (A,B) = β

N , P (B,A) = 0.

The above model for the acyclic asymmetric process with boundary conditions is the most general one,
where q ∈ [0, 1] is an asymmetry parameter that can be varied. For the following intuitions, however, we will
be considering the simplified case where we fix q = 0. This is the case of total asymmetry, where particles
can only move to the right, and left moves have 0 probability. As a concrete example, consider the cyclic
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Figure 8: State space for the acyclic asymmetric process with N = 2.

asymmetric process where N = 2. The state space of all possible particle configurations for this process is
illustrated in Figure 5, where the size of the state space is M = 22 = 4.

Now, using the algorithm we described above, we can compute the transition matrix P . Consider the case
where the current particle configuration is σ3. Recall that Pij (the i-jth entry of the matrix P ) represents
the probability of transitioning from state σi to state σj . We can work out each of the entries as follows,
ending with the probability that we remain in the current state σ3:

1. There is a probability of 1
3 that position 2 is chosen and a probability β the particle is removed,

resulting in configuration σ1, so P31 = β
3 .

2. There is a probability of 1
3 that position 1 is chosen and a probability q that the particle in position 2

moves to the left, resulting in configuration σ2, so P32 = q
3 .

3. We consider the following cases:

• Position 0 is chosen with probability 1
3 , and no particle is supplied with probability 1− α.

• Position 1 is chosen with probability 1
3 , and the particle in position 2 does not move left with

probability 1− q.

• Position 2 is chosen with probability 1
3 , and the particle in position 2 does not get removed with

probability 1− β.

Collectively, the probability of σ3 transitioning to σ3 in the next step, P33 = 1−α
3 + 1−q

3 + 1−β
3 =

1− α+q+β
3

4. There is a 1
4 probability that position 0 is chosen, and seeing that there is no particle in position 1,

there is a probability α a particle is inserted in position 1 resulting in σ4, so P34 = α
3 .

We have therefore worked out the third row of the transition matrix P , and doing a similar process for
the remaining rows will generate the entire 4 × 4 Markov matrix P representing the transitions between
different states in the state space. This will yield the following transition matrix for the Markov chain:

P =

σ1 σ2 σ3 σ4


σ1 1− α
3

α
3 0 0

σ2 0 2
3

1
3 0

σ3
β
3

q
3 1− α+q+β

3
α
3

σ4 0 β
3 0 1− β

3

4.2 Intuitions about Equilibrium Distributions

4.2.1 Irreducibility & Aperiodicity

For the cyclic case, we showed Proposition 1 via Lemmas 1 and 2 that the Markov chain representing the
cyclic asymmetric process has a unique stationary distribution, by applying the Basic Limit Theorem of
Markov Chains and showing that the Markoc chainw as irreducible and aperiodic. We demonstrate the same
properties for the acyclic case below:
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Lemma 5. The Markov chain for the acyclic asymmetric process is irreducible.
Proof: Let the state 00 . . . 0︸ ︷︷ ︸

n+1 times

be the zeros state and consider any arbitrary states in the state space of the

Markov process σi, σj : it is possible to go from σi to the zeros state by having all the particles in σi exiting
from the right side of the chain one at a time, beginning from the rightmost particle. Then, from the zeros
state, one can get to any other state σj by inserting particles one at a time from the left side of the chain
and moving them to the positions where there are particles in σj to reach that state. We do this by inserting
a particle in the rightmost position where there is a particle in σj , and working leftwards.
With this algorithm, we describe the process of transitioning from σi → 00 . . . 0︸ ︷︷ ︸

n+1 times

→ σj . Since σi and σj

are arbitrarily chosen, we can generalize to say that for any state in the state space of the Markov process,
it is possible to access any other state in the state space by first transitioning from the initial state to the
zeros state by removing all the particles starting from the rightmost particle, then inserting particles at the
corresponding positions of the resulting state starting from the rightmost particle. □

Lemma 6. If an irreducible Markov chain has a state σ(i) such that Pii > 0, then the Markov chain is
aperiodic.
Proof: The broad approach of the proof is as follows: stabilize a state σ(j), and we will show that
ρ(σ(j)) = 1, i.e., state σ(j) is aperiodic. Since σ(j) is arbitrary, we can conclude that the entire Markov
chain is aperiodic.

We are given that for a state σ(i), Pii > 0, and so P
(m)
ii > 0 for all m ≥ 1 (meaning, that same entry in the

transition matrix P is positive for all higher powers of P ). By irreducibility, we know that for some n, n′ ≥ 1,

• P
(n)
ij > 0, meaning there is a positive probability of getting from state σ(i) to state σ(j) in n steps,

and

• P
(n′)
ji > 0, meaning there is a positive probability of getting from state σ(j) to state σ(i) in n′ steps

Therefore, P
(n′+m+n)
jj ≥ P

(n′)
ji P

(m)
ii P

(n)
ij > 0. Since m is the arbitrary power that the transition matrix P is

raised to, i.e., m = 1, 2, 3, ..., the greatest common divisor of n′ +m+ n where P
(n′+m+n)
jj > 0 for a variable

m is 1. Hence the period of σ(j), ρ(σ(j)) = 1, thus σ(j) is aperiodic. Since σ(j) is arbitrarily chosen, we
conclude the entire Markov chain is aperiodic.

Lemma 7. The Markov chain for the acyclic asymmetric process is aperiodic.
Proof: Using Lemma 6 above, we prove by construction that for all acyclic asymmetric processes, there
exists a state σ(i) in the state space of any acyclic asymmetric process such that Pii > 0. The construction
of state σ(i) is inspired by the observation of the transition matrix P calculated at the end of Section 4.1 for
the acyclic asymmetric process where N = 2: notice that the transition probability P22 is fairly simple at
2
3 , while the other transition probabilities Pii where i ̸= 2 are dependent on the parameters q, α, β ∈ [0, 1].
We observe the properties of σ2 and generalize it to construct the state σ(i) in the state space of any acyclic
asymmetric process where Pii > 0.
Consider the state σ(i) where there is a particle at index 1 and blank positions at every other index. In the
state space of N = 2 above in Figure 8, this corresponds to σ2, and for other values of N , we simply need to
add blank spaces for indices 2 through N . Note the special case where N = 1: P (σ(i) → σ(i)) in this case
will be equal to 1− β

2 , since the particle in index 1 is chosen and moves to the left with probability β
2 (and

if index 0 is selected, there cannot be a particle inserted as we defined σ(i) to have a particle at index 1).
We know 1− β

2 > 0 since β < 1, so P (σ(i) → σ(i)) > 0 for the acyclic asymmetric process where N = 1.
Now, to show that for the cases where N ≥ 2, P (σ(i) → σ(i)) > 0: if index 1 is selected (with probability

1
N+1 ), the particle at index 1 will move to the right as determined by our algorithm in Section 4.1, since by
construction index 2 has no particle. (Note that if index 0 is selected, there cannot be a particle inserted
as we defined σ(i) to have a particle at index 1, so P (σ(i) → σ(i)) > 0 is independent of the parameter
α). The probability P (σ(i) → σ(i)) is, therefore, the probability of selecting any index other than index 1.
Therefore,

P (σ(i) → σ(i)) = P (any index other than 1 is selected) = 1− 1

N + 1
=

N

N + 1
> 0

We have therefore constructed a state σ(i) such that Pii > 0, and since the Markov chain for the acyclic
asymmetric process is irreducible (by Lemma 5) and an irreducible Markov chain with state σ(i) such that
Pii > 0 is aperiodic (Lemma 6), we use these two lemmas in conjunection to show that the Markov chain
for the asymmetric process is aperiodic. □

Proposition 3. The Markov chain representing the acyclic asymmetric process converges to a unique sta-
tionary distribution.
Proof: This proposition follows from Lemma 6 and Lemma 7 above. Having shown the Markov chain
representing acyclic asymmetric processes is both irreducible and aperiodic, we claim the Basic Limit The-
orem of Markov chains theorem applies to acyclic asymmetric processes. Therefore, since the Markov chain
of acyclic asymmetric processes is irreducible and aperiodic, the stationary distribution is unique, meaning
regardless of the initial state of the Markov chain, it will converge to that unique stationary distribution. □

4.2.2 Double Stochasticity

Unlike the cyclic model, the acyclic model is likely not doubly stochastic for the vast majority of asym-
metric processes. We will show this formally using the transition matrix P calculated above in Section 4.1.
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Lemma 7. The Markov matrix for the acyclic asymmetric process is not always doubly stochastic.
Proof: Consider the negation of the above statement: “The Markov matrix for the acyclic asymmetric
process is always doubly stochastic.” We will show this is false by counterexample, using the example of P
computed above. We know that all the rows of P sum to 1 due to the Markov or stochastic property, so now
we turn to the columns. Based on the different columns of P , we get the following system of three equations:

α = β (from columns 1 and 4)

α+ q + β = 1 (from column 2)

α+ q + β = 2 (from column 3)

Evidently, this system of equations is unsatisfiable and has no solution due to the second and third equations.
Hence, it is impossible for the acyclic asymmetric process where N = 2 to have a doubly stochastic matrix
for any parameters q, α, β ∈ [0, 1]. We have therefore shown that the negated statement is false, thus it is
proven that the Markov matrix for the acyclic asymmetric process is not always doubly stochastic. □

Given Lemma 7, we cannot use the same approach as wiith cyclic asymmetric processes to prove conver-
gence to the unique uniform stationary distribution. We go further to posit the following conjecture:
Conjecture 1. The vast majority of Markov chains representing acyclic asymmetric processes do not have
a stationary distribution that is uniform.
Justification: By Lemma 7, we see that Markov matrices for acyclic asymmetric processes are not al-
ways doubly stochastic. We additionally hypothesize that transition matrices for most acyclic asymmetric
processes are not doubly stochastic. Presumably, it is difficult (or impossible) for transition matrices of
acyclic models with variable N to be doubly stochastic, unless specific conditions are met such that there
exist solutions for the system of equations derived from the columns of the corresponding transition matrix.
Therefore, we cannot use the same approach as the cyclic case to conclude that the acyclic asymmetric
processes converge uniquely to the uniform distribution.
We go further to conjecture that it is unlikely for acyclic asymmetric processes to converge to the uniform
distribution because the rate of supply and removal of particles are different. The distribution of particles
depends on parameters α and β, and especially when α ̸= β, some states will be more likely than others.
For instance, if we had a large α ≈ 1 and small β ≈ 0, states with more particles present (or more 1s than
0s, using our numeric representation) will be more likely, and the converse if we have a large β and small α.
Conceivably, if the rate of supply and rate of removal of particles are equal (i.e., α = β), and the asymmetry
parameter q is fixed at a specific value that satisfies said system of equations, it may be possible to have a
doubly stochastic transition matrix, in which case we expect similarities with cyclic asymmetric processes. In
these limited cases, by Lemma 4 and Proposition 3, the Markov chain will converge uniquely to the uniform
stationary distribution. However, for the majority of cases where the acyclic model does not have a doubly
stochastic transition matrix, the Markov chain will not have a uniform stationary distribution. For such
Markov chains, we know the Markov process converges to a unique stationary distribution by Proposition 3,
but we conjecture that the unique stationary distribution is not uniform.

5 Conclusion & Future Work

To summarize the contributions of this paper, we present a model of cyclic and acyclic asymmetric
processes, each described algorithmically by evaluating four possible cases of particle configurations in each
model. We demonstrate these algorithms in action by walking through the steps involved to compute ex-
amples of Markov transition matrices for small values of N for both the cyclic and acyclic case. Next, we
study and prove properties of irreduciblity, aperiodicity, and double stochasticity for the cyclic and acyclic
cases. We then invoke these properties to prove that cyclic asymmetric processes converge uniquely to the
uniform distribution regardless of the initial state configuration of the Markov process. However, for acyclic
asymmetric processes, we proved that the Markov process converges to a unique stationary distribution, but
we are unable to prove that it converges to the uniform distribution using the same approach as for cyclic
asymmetric processes, because the double stochasticity property does not hold for the vast majority of acyclic
asymmetric processes. We go further to conjecture that the vast majority of Markov chains representing
acyclic asymmetric processes do not have a stationary distribution that is uniform, with limited exceptions
when the parameters q, α, β meet very specific conditions. Defining the stationary distribution for asymmetric
processes precisely and exploring its dependence on the parameters α, β is a natural direction for future work.

We analyzed the property of average speed in the cyclic case, concluding that as, defined as the expected

displacement at some position i, the average speed is (1− q) ∗ k
N ∗ (N−k)

(N−1) . We leave studying further prop-

erties for the acyclic asymmetric model with boundaries for future work, including average speed, but there
also other aspects such as average particle density at equilibrium and probability distribution of the num-
ber of particles. This would require more rigorous proofs of the properties noted above, specifically double
stochasticity, irreducibility, and aperiodicity, but also potentially additional properties of Markov matrices
not explored here. Another potential area for further investigation is the presence of phase transitions, which
refers to high dependencies on the parameters q, α, β ∈ 0, 1 in the limit where N is large.

Finally, an interesting area for future work is studying non-equilibrium systems, such as studying the
evolution of processes starting with a particular configuration, for instance an infinite chain, say, of which
the left half is filled with particles. This is highly relevant to the physical sciences, which is where the interest
in asymmetric processes is fundamentally rooted in, in studying the evolution of particle systems over time.
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