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Abstract

This paper explores cumulative distribution functions for infinite coin tosses, pa-
rameterized by the probability p of flipping heads. We graph the outcomes of simulated
coin flips and study properties of the cumulative distribution function, analyzing its
pathological behavior in terms of continuity, differentiability, and arc length.

1 Introduction

Coin flips are a classic probability problem, and some probability distributions that
commonly result from these processes are the geometric and binomial distributions. In this
problem, we consider an interesting twist on the classic coin problem with an infinite number
of coin tosses. To begin, the result of n coin tosses can be represented by a binary number
in the interval [0, 1] with n digits, where the k-th digit is 0 if the kth toss comes up tails
and 1 if it comes up heads. For example, in binary expansion for one toss of heads, 0.1 = 1

2 ,
and tails, heads, heads is 0.011 = 3

8 . In section 2, we will prove any number in the interval
[0, 1] can be represented in a binary expansion.

Now let y be the outcome of an infinite toss, and consider the function on [0, 1]: P (x) =
probability that y ≤ x, which is the cumulative distribution function. We let the probability
of heads be p, so tails is q = 1 − p, where the coin is not necessarily fair. We will begin in
Section 2 by deriving expressions for P

(
x
2

)
and P

(
1+x
2

)
in terms of P (x). After this, in

Sections 3 and 4, we generate an approximation of the cumulative distribution function for
P (x) for various values of p. In Section 5, we will remark on the different properties of the
cumulative distribution functions. In Sections 6 and 7, we make connections to some other
concepts in probability, such as the Galton board, and explore areas for future work.

2 Expressing P (x2) and P (1+x
2 ) in terms of P (x)

Before we begin expressing P (x2 ) and P ( 1+x
2 ) in terms of P (x), it is first important to

note the lemma any number in the interval [0, 1] can be represented in a binary expansion.

Lemma 1. Any number in the interval [0, 1] can be represented in a binary expansion.
Proof: Consider the interval [0, 1]. For any number m, we can divide the interval into 2m

many intervals, each of length 1
2m , where each interval goes from [ k

2m , k+1
2m ], with 0 ≤ k ≤

2m − 1. For example, when m = 2, we have 4 intervals, each of length 1
4 . Then we have the

intervals [0, 1
4 ], [

1
4 ,

2
4 ], [

2
4 ,

3
4 ], [

3
4 ,

4
4 ]. At higher values of m, we have more and more intervals,

each of smaller lengths. Now consider any number y in the interval [0, 1]. We can think of
identifying this y by which side of an interval it falls on for every level m. First, for m = 1,
is the number between [0, 1

2 ] or [
1
2 , 1]? If the former, the first digit is a 0, and if the latter,

a 1. Let’s assume the first digit is a 1. Next, for m = 2, we consider whether, knowing that
y ≥ 1

2 , is y between [ 12 ,
3
4 ], or [

3
4 ,

4
4 ]? Again, if y is in the left partition of this interval, add

a 0; else add a 1. By following this process for higher values of m, we can describe y as a
sum of these 1’s or 0’s for each decimal place, based on which side of the interval y falls in
at each level. Then we can express y as y =

∑N
m=1

xm

2m , as the summation of small intervals
between 0 and 1, where xm ∈ 0, 1.
Now let’s take N = 1 and consider the difference between some number y and the inter-
val xn

2n : y − x
2 . Since we can place y to the precision of either left or right of 1

2 , y − xn

2
is bounded by the length of the smallest interval we’ve placed y in: y − xn

2 < 1
2 . Then,

in the generalized case, as N → ∞, y −
∑N

m=1
xm

2m < 1
2N

→ 0, as the distance between

the intervals becomes infinitely small. Now assume that y −
∑N

m=1
xm

2m < 1
2N

, and con-

sider N = N + 1: y −
∑N+1

m=1
xm

2m < 1
2N+1 . If we expand out the final term, we recover

y−
∑N

m=1
xm

2m − xm+1
2m+1 < 1

2N
, which demonstrates that y is always within 1

2N
from the closest
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edge of the interval, where the whole interval is size 1
2N

. □

Note this binary expansion is not necessarily unique, e.g. 1
2 could be represented as

either 0.10000 or 0.01111. However, we argue that this will not pose a problem for finding
P (x). While the infinite sequences 0.10000... and 0.01111... represent very different coin flip
sequences, they are essentially equivalent in terms of binary expansion: using the intervals
interpretation, both numbers (in the limit) are essentially in the same position on the num-
ber line. However, since P (x) represents the probability that the infinite coin toss y ≤ x,
this single example will not affect the value of P (x). This is because the probability of any
single outcome is 0 as the probability of a single outcome with say k heads and (n−k) tails is
pk(1−p)n−k → 0 since p, 1−p < 1. In other words, the function represented by P (x) is not
dependent on the representation of y, because two different infinite binary expansions (or
coin toss sequences) result in the same number y, but since the probability of each outcome
is 0, this does not affect the cumulative distribution function.

Now, we will first express P (x2 ) in terms of P (x). We want to show that for any x
representable by a binary expansion, x

2 can be represented by shifting one digit to the right
(e.g. inserting a 0 in the front). By the lemma above, we have shown that any number in the
interval [0, 1] has a binary expansion. So any y ∈ [0, 1] can be expressed as y =

∑∞
n=0

xn

2n ,
where x ∈ 0, 1. Now consider y

2 :

y

2
=

1

2

∞∑
n=0

xn

2n
=

∞∑
n=0

xn

2
· 1

2n
=

∞∑
n=0

x

2n+1

The primary intuition behind deriving the expression for P (x2 ) from P (x) is that we shift
all the digits for the outcomes satisfying P (x) 1 digit to the right and prepend a 0 to the
binary string. Let us consider the case where there is a digit 1 in the kth position where
k ∈ Z, which adds 1

2k
to the binary expansion. Shifting this to the right by 1, there is now

a 1 in the (k + 1)th position, which adds 1
2k+1 = 1

2 (
1
2k
) to the binary expansion. If we do

this for every digit in the binary expansion, the overall sum is halved.

For y, the outcome of our infinite toss, observe that P (x) refers to the probability that
y ≤ x. When we consider P (x2 ), we are considering the probability that y ≤ x

2 . Mathe-
matically, for y ∈ [0, 1], y =

∑∞
k=0

xk

2k
where xk ∈ 0, 1. Then, y

2 =
∑∞

k=0
xk

2k+1 =
∑∞

k=0
1
2
xk

2k
,

as desired. This justifies the transition function of shifting all the digits for the outcomes
satisfying P (x) 1 digit to the right, which is equivalent to dividing the binary expansion by
2, and prepend a 0. Hence, dividing x by 2 is equivalent a right shift, so P (x2 ) refers to
x with a 0 inserted in the first position, followed by the original digits of x. Note that a
leading zero refers to flipping tail. Hence P (x2 ) refers to the event where we flip a tails first,
and all subsequent flips are the same as the event x.

Since all of the coin flips are independent, we can therefore multiply P (x) by the prob-
ability of the first coin flip resulting in tails, to get the probability of flipping a tails (or
0) first followed by all of the flips corresponding to binary sequences generating an infinite
coin toss y ≤ x. In general, P (x2 ) = (1− p) · P (x), since the probability of the first coin flip
being 0 or tails is (1− p).

Therefore, we can express P (x2 ) as

P
(x
2

)
= (1− p) · P (x) (1)

Similarly, the intuition behind deriving the expression for P
(
1+x
2

)
from P (x) is that we

shift all the digits for the outcomes satisfying P (x) to the right by 1 and prepend a 1 to
the binary string. The reasoning for this intuition is similar to the above, but adding a 1
digit in the first position adds a value of 1

2 to the overall binary expansion, since we want
to obtain P

(
1
2 + x

2

)
from P (x). To derive this, we need to consider two cases:

• Case 1 - Outcomes in the interval [0, 1
2 ]: In this case, we consider all the outcomes of

infinite tosses where the first flip is 0, or tails. This occurs with probability (1 − p),
since the probability of the first coin flip being tails is (1− p).

• Case 2 - Outcomes in the interval [ 12 ,
1+x
2 ]: In this case, we use the reasoning similar

to the reasoning for P
(
x
2

)
, except the first digit prepended to the binary expansion

is 1 instead of 0. We can therefore similarly multiply P (x) by the probability of the
first coin flip resulting in heads (or 1), which is p · P (x).
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Considering these cases jointly, we can then express P ( 1+x
2 ) as follows:

P

(
1 + x

2

)
= (1− p) + p · P (x) (2)

To restate our findings:

P
(x
2

)
= (1− p) · P (x)

P

(
1 + x

2

)
= (1− p) + p · P (x)

We can use a change of variables to represent x = 2a (i.e. a = x
2 ) to obtain:

P (a) = (1− p) · P (2a)

We can use a different change of variables to represent x = 2b−1 (i.e. b = 1+x
2 ) to obtain:

P (b) = (1− p) + p · P (2b− 1)

We can combine these two cases to get a combined function for P (z):

P (z) =

{
(1− p) · P (2z) 0 ≤ z ≤ 1

2

(1− p) + p · P (2z − 1) 1
2 ≤ z ≤ 1

(3)

This function in Equation 3 determines P (x) at dyadic rationals, or numbers that can be
expressed as a fraction whose denominator is a power of two. Specifically, dyadic rationals
have binary expansions with finitely many 1 digits. Since we know for a fact that P (0) = 0
and P (1) = 1, given an arbitrary dyadic rational x, we can determine P (x) using finitely
many applications of the two equations in the combined function. As an example, consider
x = 3

8 = 0.011. We see that

3

8
=

1

2

(
3

4

)
=

1

2

(
1

2
+

1

4

)
=

1

2

(
1

2
+

1

2

(
1

2

))
=

1

2

(
1 + 1

2

2

)
⇒ P

(
3

8

)
= P

(
1

2

(
3

4

))
= (1− p) · P

(
3

4

)
(Equation 3a)

= (1− p) · P
(
1 + 1

2

2

)
= (1− p) ·

(
(1− p) + p · P

(
1

2

))
(Equation 3b)

= (1− p) · ((1− p) + p · ((1− p) · P (1))) (Equation 3a)

= (1− p)2 + p(1− p)2 (since P (1) = 1)

= (1− p)2(1 + p)

However, for the infinite coin toss, deriving a closed form solution for the cumulative
distribution function is likely to be challenging (or impossible). That said, these values can
be used to create a plot of the function from which we can observe interesting properties.
From Equation 3 alone, we hypothesize that a graph of P (x) is likely continuous since x
varies continuously in the interval [0, 1] and for every value of x, P (x) can be determined
using the corresponding equation. However, P (x) will likely not be differentiable since P (x)
is modeled using different functions for 0 ≤ z ≤ 1

2 and 1
2 ≤ z ≤ 1, so there will be a sharp

transition at the value z = 1
2 . We show this explicitly in the next section by plotting the

cumulative distribution functions for different values of p.

3 Continuous random variables and probability distri-
butions

From the problem statement, let y be the outcome of an infinite toss, and consider the
function on the interval [0, 1] defined as P (x) = probability that y ≤ x. At first glance, this
seems to resemble a cumulative distribution function for a continuous random variable in
statistics, and in this section we push this idea further.
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From above, we defined P (x) = p(y ≤ x), and we can think of y as the outcome of a
series of random events taking on any value in the range [0, 1], meaning y is a continuous
random variable. We are ascertaining whether the value y lies within an interval [0, x] (i.e.,
p(y ≤ x) = p(y ∈ [0, x]). This means P (x) = P (y ≤ x) expresses the cumulative distribu-
tion function, which is parameterized by different values of p, meaning the value of p will
determine the underlying distribution of y1. We prove the theorem below:

Theorem 1. The probability of y being any single outcome is zero, i.e., p(y = x) = 0.
Proof: We can prove this for the infinite coin toss: as the number of digits in the binary
expansion (and analogously, the number of partitions in the interval [0, 1]) n → ∞, the
probability of a single outcome with say k heads and (n − k) tails is pk(1 − p)n−k → 0
since p, 1 − p < 1. Therefore, y is a continuous random variable, and we represent P (x)
as a cumulative distribution function since it is a continuous random variable, rather than
typical (finite) coin tosses which are discrete random variables. Therefore, our cumulative
distribution function is continuous. □

To explore this notion, consider first the simplest case of a fair coin, meaning the prob-
ability of any toss coming up heads (or 1) is equal to that of tails (or 0), and they are
both 1

2 . As described above all outcomes of an infinite coin toss have the same probability;
specifically, 0. Further, because heads and tails occur with the same probability, y is equally
likely to be inside of any given equally sized interval between [0, 1].

Hence we can model the probability density of the infinite tosses with the uniform dis-
tribution. The underlying probability density function for y would therefore be the uniform
distribution, and P (x) will be the cumulative distribution function of a uniform random
variable. We can see the probability density function (Figure 1a) and cumulative distribu-
tion function (Figure 1b) of the fair coin in the figure below, where the interval is [0, 1].

(a) Probability density function of
a uniform random variable.

(b) Cumulative distribution function of a uniform
random variable.

Figure 1: Probability distributions for the fair coin.

Now, we seek to generalize to the unfair coin, meaning the probability of any toss coming
up heads p and probability of any toss coming up tails q are not equal, and p+ q = 1. This
is far less straightforward and our primary next steps involve exploring this ”pathological”
function as stated in the problem statement.

4 Graphing the Pathological Function

Attempting to derive a closed form solution for the cumulative distribution function
for the unfair coin is challenging, or potentially impossible. Rather than deriving a formula
from first principles, we can graph the probabilistic outcomes of large number of coin flips
(to approximate approaching an infinite number of coin flips). We can then analyze various
properties about the ”pathological” function, such as its continuity and differentiability.
We can also get a better understanding of the P (x) for various values of x and see how
this corresponds with the function we derived above in Equation 3. The code we used to
generate the cumulative distribution functions for unfair coins is shown below:

1 def calculate(p, n, iters):

2 values = [1/2 + 1/(2**(k+1)) for k in range(0, n + 1)] + [1/(2**k) for k

in range(1, n + 1)]

3 print(values)

4 probabilities = [(1-p) + p*(1-p)**k for k in range(0, n + 1)] + [(1-p)**k

for k in range(1, n + 1)]

5 print(probabilities)

6 for i in range(iters):

1Another remark, from our derivations above, is that since p(y ≤ x) = p(y ∈ [0, x]), then p(y ≤ x
2
) =

p(y ∈ [0, T (x)]), where T represents some transition function. In the case of T (x) = x
2
, T represents a shift

to the right by 1 digit and prepending a 0 to the binary expansion.
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7 values = [(value /2) + 0.5 for value in values] + [value /2 for value

in values]

8 probabilities = [p * prob + (1-p) for prob in probabilities] + [prob

*(1-p) for prob in probabilities]

9 print(i)

10 return values , probabilities

11

12

13 if __name__ == ’__main__ ’:

14 p, n, iters = 0.9, 30, 17

15 calculated_values , calculated_probabilities = calculate(p, n, iters)

16 plt.scatter(calculated_values , calculated_probabilities , s = 1)

17 ... # formatting

18 plt.show()

We plot (12
i
, P ( 12

i
)) and ( 12 + 1

2

i
, P ( 12 + 1

2

i
)) values for 1 ≤ i ≤ n using our given

equations. Then, we iteratively divide these x values by 1
2 and extended the array to all of

these x values to x and x+ 1
2 , creating new y values for corresponding x along the way. By

iteratively doing this, we are able to obtain more x values closer to 1
2 , until we are able to

fill in many many points between 0 and 1. Below are the plots the cumulative distribution
functions for the uniform and ”pathological” cases:

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2: Cumulative distribution functions for various values of p (the probability of flipping
heads), where (a) p=0.1 (b) p=0.3 (c) p=0.5 (d) p=0.7 (e) p=0.9 (f) p=0.95 (g) p=0.99.

Observe that at smaller values of p, when the coin is biased in favor of tails, the graph
is concave down, with a steep curve around the lower calculated values. In contrast, at
higher p values, the graph has a slow take-off with a steep curve closer to one. In the former
case, since the coin favors tails, we expect it to take longer until we see a 1 appear (e.g.
if p = 0.01, we expect to see one 1 in 100 trials). This means that runs of 0’s are more
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common, so we see more clusters around numbers with more leading zeros. Hence these
outcomes are clustered around smaller numbers (before 1

2 . Similarly, for higher p values, we
expect it to take longer until zeroes appear, so outcomes are clustered around the end of the
interval, where ones appear earlier in the binary expansion. Another observation pertains
to the symmetry of the graphs. For the graph of P (x) generated with p = a, the graph of
P (x) generated with p = 1−a is symmetric about the point (12 ,

1
2 ), specifically a 180-degree

rotation in the same plane. In Figure 2, this can be seen by comparing Figures 2(a) and
2(e), and Figures 2(b) and 2(d).

In the next section, we will analyze the ”pathological” behaviors and characteristics of
these functions.

5 Analyzing the Cumulative Distribution Function

5.1 Continuity

Definition 1. A cumulative distribution function is continuous if and only if P (X = x) = 0,
i.e., the probability that a random variable X takes on any specific value x is 0.

With the above definition, we prove that the function P (x) is continuous.

Theorem 2. P (x) is continuous.
Proof : We want to show that for our infinite coin toss y, p(y = x) = 0, which would imply
that our cumulative distribution function P (x) is continuous by Definition 1. We know that
the probability of the binary sequence outcome x is ph(1 − p)t, where h is the number of
heads and t is the number of tails flipped. We know that p, 1− p < 1. There are an infinite
number of coin flips so there are either an infinite number of heads or tails flipped. Then,
since limh→∞ ph(1−p)t = 0 and limt→∞ ph(1−p)t = 0, ph(1−p)t → 0. Then, p(y = x) = 0,
so by Definition 1, our cumulative distribution function P (x) is continuous.

5.2 Differentiablity

From the graphs in Section 4, we observe that the most prominent kinks frequently
occur at the values x = 1

4 , x = 1
2 , x = 3

4 ..., i.e., at locations corresponding to the dyadic
numbers. Specifically, these locations correspond to places where the binary expansion con-
sists of a finite number of ones, e.g. where the outcome of a single coin toss is added to the
binary expansion. Most notably, at x = 1

2 , there is an obvious kink, due to the process of

generating the points for the graph corresponding to ( 12
i
, P ( 12

i
)) and ( 12 + 1

2

i
, P ( 12 + 1

2

i
)).

We use this observation to prove that P (x) is not differentiable at x = 1
2 :

Theorem 3. P (x) is not differentiable at x = 1
2 for values of p ̸= 1

2 .
Proof: Notice that the numbers between 1

2 = 0.1 and 1
2 +

1
2n = 0.10...01 (where there are

n− 2 0s before the second 1) are all in the form 0.10...0.... The number must have a 1 as its
first binary digit as it needs to be greater than 1

2 , and since it needs to be less than 1
2 +

1
2n ,

the number needs to be followed with n− 1 0s, and the numbers after the first n digits will
not matter. (The cases where the number is equal to 1

2 and 1
2 + 1

2n is not significant to
our calculations as the probability of that occuring is 0.) Thus, P ( 12 + 1

2n ) − P ( 12 ) is the
probability a number occurs in the form 0.10...0..., with 1 followed by n− 1 0s.
The derivative at 1

2 approaching from the right side is

lim
n→∞

P ( 12 + 1
2n )− P ( 12 )
1
2n

= 2n[p(1− p)n−1] =
p

1− p
∗ (2− 2p)n

Notice that when p < 1
2 , (2− 2p)n → ∞ and when p > 1

2 , (2− 2p)n → 0, and when p = 1
2 ,

(2− 2p)n → 1.
Now we examine what numbers are between 1

2 = 0.1 and 1
2 − 1

2n = 0.01...1 where there are
n − 1 1s after the first 0. The number must have a 0 as its first binary digit as it needs
to be less than 1

2 and the next n − 1 digits must be 1, for the number to be greater than
1
2 − 1

2n . The digits after the first n digits will not affect whether the number is between 1
2

and 1
2 −

1
2n or not. (The cases where the number is equal to 1

2 and 1
2 −

1
2n is not significant

to our calculations as the probability of that occuring is 0.) Thus, P ( 12 )− P ( 12 − 1
2n ) is the

probability a number occurs in the form 0.01...1..., with 0 followed by n− 1 1s.
Now, examine the derivative at 1

2 approaching from the left side:

lim
n→∞

P ( 12 )− P ( 12 − 1
2n )

1
2n

= 2n[(1− p)pn−1] =
1− p

p
· (2p)n
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Notice that when p > 1
2 , (2p)n → ∞, and when p = 1

2 , (2p)n → 1, and when p < 1
2 ,

(2p)n → 0. Our derivative is only defined at p = 1
2 , where the derivative is equal to 1 since

2− 2p = 2− 2( 12 ) = 1. □

From Theorem 3, we extend this reasoning to all the powers of two, i.e. 1
2i for i ∈ N:

Theorem 4. P (x) is not differentiable at x = 1
2i for values of p ̸= 1

2 .
Proof: Notice that the numbers between 1

2i = 0.0...01 (there are i − 1 0s before the 1)
and 1

2i +
1
2n = 0.0...010...01 (there are n− 1 digits before the second 1) are all in the form

0.0...010...0. The number must have i−1 0s followed by a 1 as its first i digits as it needs to
be greater than 1

2i , and since it needs to be less than 1
2i +

1
2n , there must be n− i 0s after

the first i digits. The numbers after the first n digits will not matter. (The cases where the
number is equal to 1

2i and 1
2i +

1
2n is not significant to our calculations as the probability

of that occuring is 0.) Thus, P ( 1
2i +

1
2n )− P ( 1

2i ) is the probability a number occurs in the
form 0.0...010...0..., with i− 1 0s followed by a 1 followed by n− i 0s.
The derivative at 1

2i approaching from the right side is

lim
n→∞

P ( 1
2i +

1
2n )− P ( 1

2i )
1
2n

= 2n[p(1− p)n−1] =
p

1− p
· (2− 2p)n

Notice that when p < 1
2 , (2− 2p)n → ∞ and when p > 1

2 , (2− 2p)n → 0, and when p = 1
2 ,

(2− 2p)n → 1.
Now examine what numbers are between 1

2i = 0.0...01 and 1
2 −

1
2n = 0.0...01...1 (which has i

0s followed by n− i 1s). The number must have i 0s as its first i digits as it needs to be less
than 1

2i and the next n− i digits must be 1, for the number to be greater than 1
2i −

1
2n . The

digits after the first n digits will not affect whether the number is between 1
2i and 1

2i −
1
2n

or not. (The cases where the number is equal to 1
2i and 1

2i − 1
2n is not significant to our

calculations as the probability of that occurring is 0.) Thus, P ( 1
2i ) − P ( 1

2i − 1
2n ) is the

probability a number occurs in the form 0.0...01...1..., with i 0s followed by n− i 1s.
Now, examine the derivative at 1

2i approaching from the left side:

lim
n→∞

P ( 1
2i )− P ( 1

2i −
1
2n )

1
2n

= 2n[(1− p)ipn−i] = (
1− p

p
)i(2p)n

Notice that when p > 1
2 , (2p)n → ∞, and when p = 1

2 , (2p)n → 1, and when p < 1
2 ,

(2p)n → 0. Our derivative is only defined at p = 1
2 . □

Having proved that P (x) is not differentiable at the powers of 2, it is intuitive that the
graph will not be differentiable at dyadic rationals. We prove this formally below:

Theorem 5. P (x) is not differentiable at x = k
2i for values of p ̸= 1

2 .

Proof: Let k
2i be in simplest form (for simplicity of calculations below). Notice that k

2i

has a 1 as its i-th digit in its binary expansion, and k
2i + 1

2n appends n − i − 1 0s to k
2i

followed by a 1. Any number between k
2i and k

2i + 1
2n must be larger than k

2i so its first

digits will be those of k
2i . It must be less than k

2i +
1
2n , so its remaining digits must be n− i

0s. Note that the digits after the first n digits do not affect whether the number satisfies
our conditions. Below, we are going to refer to h as the number of 1s and t as the number
of 0s in the binary expansion of k

2i .

The derivative at k
2i approaching from the right side is

lim
n→∞

P ( k
2i +

1
2n )− P ( k

2i )
1
2n

= 2n[ph(1− p)n−h] = (
p

1− p
)h ∗ (2− 2p)n

Notice that when p < 1
2 , (2− 2p)n → ∞ and when p > 1

2 , (2− 2p)n → 0, and when p = 1
2 ,

(2− 2p)n → 1.
Now, note that k

2i −
1
2n has the same first i − 1 digits as k

2i followed by a 0 and n − i 1s.

Numbers between k
2i − 1

2n and k
2i must have the same first i − 1 digits as k

2i in order to

be between k
2i −

1
2n and k

2i . Further, the digits following the first i − 1 digits must be a 0

followed by n − i 1s to be bigger than k
2i − 1

2n . The digits after the first n digits do not

affect whether the number is between k
2i −

1
2n and k

2i or not.

Now, examine the derivative at k
2i approaching from the left side:

lim
n→∞

P (k/2i)− P (k/2i − 1
2n )

1
2n

= 2n[(1− p)t+1pn−t−1] = (
1− p

p
)t+1(2p)n

7



Notice that when p > 1
2 , (2p)n → ∞, and when p = 1

2 , (2p)n → 1, and when p < 1
2 ,

(2p)n → 0. Our derivative is only defined at p = 1
2 . We have shown that there are infinitely

many dyadic rationals k
2m in the interval [0, 1] where P (x) is not differentiable, so these

numbers are dense on [0, 1]. Furthermore, because the cumulative distribution function is
not differentiable, there is no function that we can integrate over to obtain the function.
This is because the cumulative distribution function is algebraically found by integrating
over the probability density function, this means that P (x) has no closed-form probability
density function. □

5.3 Arc Length

Estimating the arc length of a curve can be done by partitioning the curve into segments,
each of which are approximated by a straight line, and adding up the lengths of the straight
lines, like in the diagram below.

Figure 3: Example of calculating arc length of the graph of a function.

For a single straight line segment, a simple application of Pythagoras’ theorem will yield
the length of the line segment, ℓ:

ℓ =
√
(∆x)2 + (∆y)2 =

√
(x2 − x1)2 + (f(x2)− f(x1))2

The arc length of our pathological function will be difficult to estimate, but the intuition
is that with a small enough ∆x, i.e., an infinitesimally small interval, the graph at this point
can be estimated with a straight line segment, and adding up these infinitesimally small line
segments will yield an estimate for the arc length.

Theorem 6. The arc length of P (x) is approximated as 1
2m

∑m
λ=0

(
m
λ

)√
1 + (2mpλ(1− p)m−λ)2,

where m is the number of coin flips so far (analogously, the number of partitions of the in-
terval [0, 1]), λ is the number of heads flipped.
Proof: Consider the interval at the m-th level of binary expansion (where m ∈ N is very
large), meaning the interval size is 1

2m . As m → ∞, meaning the number of coin flips or
analogously, the number of partitions of the interval [0, 1], becomes very large, the approx-
imation of the arc length improves. Now consider the segment of the graph between the
k-th and k + 1-th interval, i.e. 0 ≤ k

2m < k+1
2m ≤ 1. Given the estimation of arc length

using Pythagoras’ theorem above, we can estimate the arc length in the interval [ k
2m , k+1

2m ]
as follows:

ℓk,k+1 =

√(
k + 1

2m
− k

2m

)2

+

(
P

(
k + 1

2m

)
− P

(
k

2m

))2

=

√(
1

2m

)2

+

(
P

(
k + 1

2m

)
− P

(
k

2m

))2

=
1

2m

√
1 + 22m ·

(
P

(
k + 1

2m

)
− P

(
k

2m

))2

Summing this up over all the intervals, we get

ℓ =
1

2m

2m−1∑
k=0

√
1 + 22m ·

(
P

(
k + 1

2m

)
− P

(
k

2m

))2

Now, one might ask how we determine P
(
k+1
2m

)
−P

(
k
2m

)
, seeing as we do not have a closed

form for the cumulative distribution function due to its pathological nature. Consider an
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alternative interpretation of the intervals where binary expansions representing the outcomes
of them coin flips lie in these intervals. The difference P

(
k+1
2m

)
−P

(
k
2m

)
gives the probability

of being in the binary interval [ k
2m , k+1

2m ], which determines the binary expansion up to the

m-th digit. The binary expansions that lie within the [ k
2m , k+1

2m ] interval with λ heads and
m−λ tails have probability pλ(1−p)m−λ. Furthermore, the choices of intervals for different
values of k exhaust all possible binary sequences of length m. Therefore, the binomial
coefficient

(
m
λ

)
determines the number of binary expansions with λ many heads (or 1s), each

corresponding to probability pλ(1− p)m−λ.
We can therefore rewrite this expression using a binomial coefficient as follows:

ℓ =
1

2m

2m−1∑
k=0

√
1 + 22m ·

(
P

(
k + 1

2m

)
− P

(
k

2m

))2

≡ 1

2m

m∑
λ=0

(
m

λ

)√
1 + (2mpλ(1− p)m−λ)2

To verify this with the case of the fair coin (i.e., p = 1
2 ), which is the only case with a

non-pathological cumulative distribution function, we saw previously that the cumulative
distribution function is a straight line with gradient 1 since the probability distribution
function is a uniform distribution function. In this case, the arc length is

√
12 + 12 =

√
2.

Indeed, substituting in the value p = 1
2 into the formula we derived above, we get

ℓ =
1

2m

m∑
λ=0

(
m

λ

)√√√√1 +

(
2m · 1

2

λ

·
(
1− 1

2

)m−λ
)2

=

√√√√1 +

(
2m · 1

2

λ

·
(
1− 1

2

)m−λ
)2

(since

m∑
λ=0

(
m

λ

)
= 2m)

=

√
1 +

(
2m · 1

2m

)2

=
√
1 + 1

=
√
2

Hence, this verifies the formula we derived for arc length in the one non-pathological case
of the fair coin. □

6 Connection to Galton Board visualizations

We draw from the intuition of infinitesimally small binary intervals introduced in Sec-
tion 2, the notion that any number of interest (representing a probability) lies somewhere
on a number line with binary intervals 1

2n , and as the n → ∞, the position of the number
on the number line becomes increasingly specific. An alternative visualization is to think
of each set binary intervals of size 1

2k
for various level numbers k ≥ 0 to be a bucket, and a

ball is dropped into the very first interval of size 1, representing an infinite coin flip.

As the ball descends through various levels of intervals, at each level k + 1 with binary
interval size 1

2k+1 , the ball in the previous level k has a certain probability of being sorted
into the left interval or right interval. Being sorted into the right interval is equivalent to
flipping a heads (which has probability p) and appending a 1 to the growing binary expan-
sion, and conversely being sorted into the left interval is equivalent to flipping a tails (which
has probability q = 1 − p) and appending a 0 to the growing binary expansion. At some
large level number, say level n, which approximates the infinite coin toss, the ball being
dropped ends up in one of the binary intervals sized 1

2n .

Dropping a very large number of balls will result in a distribution of balls across the
different buckets or intervals at level n, and this represents the probability distribution for
a specific value of p. This is analogous to a Galton Board, illustrated below in Figure 5.

One important distinction is that for the case with ”infinite” levels (or where the num-
ber of coin flips is infinitely many), the ball dropping experiment on the Galton board
demonstrates the law of large numbers, specifically that

P (ball ends up in interval ik) =
number of ball that ended up in interval ik

total number of balls dropped
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Figure 4: Comparing intervals and the Galton Board

Figure 5: A Galton Board, a device invented to demonstrate the law of large numbers, in
particular that with sufficient sample size the binomial distribution approximates a normal
distribution.

However, for our intervals visualization, we demonstrated in Section 2 that the probabil-
ity distribution will be uniform. In a (physical) Galton board, the probability of a dropped
ball falling to the left or right at each level is going to be equal (i.e., p = 1

2 ), and it demon-
strates that in the limit, such ball dropping experiments reveal a normal distribution, by
the law of large numbers (when the number of rows in the Galton Board as well as the
number of balls dropped are very large). One can also imagine a hypothetical Galton board
for p ̸= 1

2 , and determining how many balls fell in each interval as a proportion of the total
number of balls dropped will give an approximation of the probability of falling in each
interval, as well as a visualization of the probability distribution overall.

7 Future Work

From our observations about the properties of the graphs of cumulative distribution
functions for infinite tosses of the unfair coin, we noted that there were kinks in the graph
at the dyadic rationals (i.e., binary expansions with with finite number of 1 digits), which
suggests that the cumulative distribution functions are not differentiable at the binary num-
bers. We give a proof for non-differentiability at the dyadic rationals in Section 5.2, but we
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leave a rigorous proof of why the function is non-differentiable at numbers other than the
dyadic numbers for future work.

One potential application of this problem that can be explored in the future is its appli-
cability to betting games, since, like a coin flip, a person could have a certain probability
p of winning a bet, and would like to decide betting amounts such that (in expectation)
one could maximize earnings. Relating back to Equation 3, a possible way to frame this
function is in decision making for betting money: let one’s initial wealth be represented by
x, which lies in the interval [0, 1], and the probability of losing any arbitrary bet be p (and
correspondingly, the probability of winning any arbitrary bet is 1 − p). If one wins a bet,
their current wealth doubles. The aim of the betting game is to reach a wealth value of 1,
where the probability of winning given wealth x is given by P (x) and represented by the
same function as in Equation 3.

If one’s initial wealth x ≤ 1
2 (the first expression in Equation 3), then one must win the

first time, otherwise one will go broke in the limit of infinite bets. Therefore, one wins the
first time with probability (1 − p) and then multiply that with the probability of winning
starting from one’s new wealth, which is now 2x, and this probability if P (2x). So we get
(1− p) · P (2x). In the second case, if one’s initial wealth x > 1

2 , then one only needs 1− x
to reach 1, and that should be the amount that one bets. If one wins the first time then
they are done, which has probability (1− p). One might lose the first time with probability
p and can still win overall - losing the first time results in a wealth of x− (1− x) = 2x− 1,
and then one wins starting from the new wealth of 2x − 1, which is p · P (2x − 1). So this
second case can be represented by summing the two probabilities (1 − p) + p · P (2x − 1).
Depending on whether 2x − 1 is more or less than 1

2 , the player will be able to determine
their probability of winning with either the first or second equation of the function.

Future work can investigate the applicability of this infinite coin toss problem to a variety
of betting games with different rules - the betting game above specifically states that winning
a bet doubles ones earnings, but other games with different rules could result in different
optimal betting amounts depending on one’s wealth. This game also has a fixed probability
of winning throughout, whereas more dynamic games might have changing probabilities.
More broadly, future work can explore the applicability of the infinite coin toss problem to
modeling long sequences of decision making, where each decision has a certain probability,
and used to optimize decisions made at each step of the process.
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