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Abstract

Large language models (LMs) are typically pretrained on large, fixed-vocabulary
text corpora. However, pretrained LMs currently face challenges adapting to novel
or modified lexical items. This project is motivated by the question: how can unseen
lexical items be incorporated into pretrained LMs? Leveraging new lexical items
defined in Urban Dictionary, we propose two approaches to editing LMs for lexical
adaptation: (1) initializing new word embeddings by averaging existing embeddings
instead of small-norm random noise, and (2) using supervised learning to predict
embeddings of new lexical items given their definition. We also design a multiple
choice, fill-in-the-blank evaluation method to assess changes in LM adaptive ability.
(findings in progress) The averaging method for embedding initialization enables
better adaptation and circumvents issues with finetuned LMs only generating
the new words. Our fill-in-the-blank evaluation task also demonstrates learning
mappings between definitions and word embeddings enables LMs to successfully
learn the definitions of new lexical items.

Our code can be found at this repository.
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2 Introduction

Changes in word meanings are inherent in language, especially with a global communication system
popularizing terms with new meanings or facilitating the creation of new terms altogether. A majority
of words have multiple meanings; certain meanings may become more or less prevalent, and a new
meaning for a word can be added to the existing list or even replace a former meaning [1]. For
instance, consider the term ’lit’, which has gained a new sense of ‘exciting’ or ‘awesome’, derived
from its established use as slang for ‘intoxicated’ to describe the vibrant environment in which acts
of becoming intoxicated often occur [2]. Among younger populations, these updated meanings are
often more prevalent than its original meanings of ’illuminated’ or the past participle of ’light’.

Accounting for lexical semantic shifts (whether for changing word meanings, adapting to specific
downstream tasks, or fine-tuning on new domains) would consequently be important for any system
attempting to model human language. There have been rapid advancements in the development of
language models (LMs) in recent years that have performed well on a wide variety of tasks, in part
due pretraining on large, fixed-vocabulary text corpuses. However, given the ever-changing nature
of society and human language, it is thus natural to pose the question: how well do pretrained LMs
adapt to lexical semantic shifts? It appears that current pretrained LMs face challenges incorporating
novel or modified lexical items. Empirically, it has been observed that attempts to add new words to
the vocabulary of pretrained LMs result in the updated model only generating the new words. This is
because the logits of existing words often become negative and large after pretraining, whereas the
default behavior of e.g. HuggingFace transformer-based models is to initialize the embeddings of
new words with the same distribution used before pretraining, i.e., small-norm random noise. [3]

The goal of this project is to develop an approach to editing LMs for lexical adaptation, motivated
by the question: how can unseen lexical items be incorporated into pretrained LMs without having
to constantly retrain the model? We use Urban Dictionary data to investigate this question. Urban
Dictionary is a crowdsourced English-language online dictionary for slang words and phrases, often
including both definitions and example sentences for new lexical items, both of which will be useful
training data. Using off-the-shelf pretrained LMs GPT-2 [4] and RoBERTa [5], we aim to compare our
proposed approaches to these baselines. This project also designs and implements a multiple choice,
fill-in-the-blank evaluation method to assess changes in adaptive ability, inspired by fill-in-the-blank
evaluation task developed in WINODICT [6].

3 Related Work

Evaluating LLMs’ ability to learn novel words at inference. Previous works have explored creation
of benchmarks for new or adjusted lexical items to support the continued semantic evolution of
language. More specifically, [6] created a new benchmark named WINODICT, which is a dataset of co-
reference resolution tasks that builds upon previous WINOGRAD[7] and WINOGRANDE[8] The work
of WINODICT centers around the idea of introducing new knowledge through prompting, assisting
the model learn in learning new concepts by defining them in terms of previously existing concepts.
[6] then evaluates this dataset on existing LLMs, finding that smaller versions of GPT-3 and PaLM
with fewer parameters, such as PaLM-8B yield performance that resembles guessing. Our approach
in leveraging the Urban Dictionary dataset pursues the same goal of improving model recognition of
new or adjusted lexical items, adapting models to shifting semantic meaning. The primary distinction
between the WINODDICT and the Urban Dictionary dataset is that Urban Dictionary terms adjust
the semantic definitions and corresponding usage of existing lexical terms, whereas the WINODICT
dataset tests models for new semantic learning of synthetic lexical terms.

Detecting semantic shifts. Prior works have investigated evaluation frameworks of semantic change
detections over time, specifically proposing a novel evaluation framework for semantic changes
of lexical items [9]. This framework collected Tweet data between January 2012 and January
2017 and computed distinct word embeddings for the dataset between monthly time bins. They
then measured the cosine distance between word embeddings over time to determine the degree of
semantic change. The study then constructs a dataset consisting of a random sample of words with the
greatest computed semantic change alongside "pseudowords," words that have their word-embeddings
artificially adjusted to simulate unnatural semantic shifts. The evaluation method then tests if LLMs
can distinguish between naturally shifted words and artificially adjusted "pseudowords." The paper
found that independently trained and aligned embeddings performed better in semantic change
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detection than embeddings that were continuously changed for long periods. Our work pursues a
similar goal to [9] of detecting semantic shifts across time periods, but focuses on utilizing lexical
items with adjusted semantic definitions rather than detecting the semantic change. In our approach,
we aim to tailor our model to words with new or adjusted semantic definitions from the Urban
Dictionary dataset and identify semantic changes across these examples fine-tune model learning and
adaptation with semantic shifts.

Learning word embeddings via reconstruction. Prior works have investigated learning word
embeddings via reconstruction, since dictionary definitions use words that are themselves dictionary
entries, to facilitate parameter sharing [10]. Such approaches leverage the inherent recursivity of
dictionaries by encouraging similarity between input definitions and encoded definition embeddings
via a consistency penalty, as both embeddings lie in the same vector space. Specifically, [10] uses an
LSTM to encode a dictionary definition into an embedding, and a conditional language model trained
by maximum likelihood to decode or regenerate the original definition given the definition embedding.
The resulting embeddings capture semantic similarity (as opposed to relatedness) better than regular
distributional methods, and such methods can generalize one-shot when trained exclusively on
dictionary data. Our approach is also motivated by leveraging dictionary definitions that use other
seen-before words to learn word embeddings for novel lexical items. A key distinction is that
embeddings of words used in Urban Dictionary definitions may already exist and need not be learned.
This removes the need for an autoencoder model, and our approach involves simply retrieving learned
word embeddings from the pretrained LM.

4 Approach

To edit LMs for lexical adaptation, we train a separate neural network to predict the embedding of the
new word from Urban Dictionary given its definition by finetuning one of the two pretrained models:
GPT-2 (unidirectional) or RoBERTa (bidirectional) [5].

The pretrained LM, GPT-2 or RoBERTa, is finetuned via supervised learning. We finetune the model
on a dictionary of common words (words which the pretrained LM has likely encountered during
training, which is separate from the Urban Dictionary dataset; see Section 5.1) to learn a mapping
from dictionary definitions to word embeddings. Concretely, for a common word w, the model
outputs a predicted embedding given the definition(s) of w, which are concatenated and collectively
tokenized. As the ground-truth for supervised learning, we extract the embedding corresponding to
word w from the embedding matrix of the pretrained LM. If w is tokenized into multiple tokens, we
extract the embeddings corresponding to each of the tokens and use the average as the ground-truth.
Since w has likely been already learned during the large-scale pretraining process of the LM, this
ground-truth is likely to be accurate.

We then perform gradient descent on the L2 loss between the [CLS] embedding at the model’s last
hidden layer and the ground-truth embedding from pretrained LM of the word w. Once the pretrained
LM is finetuned to learn mappings from English definitions to word embeddings, we predict new
word embeddings for Urban Dictionary words given the definitions in the Urban Dictionary dataset.
See Figure 1 for architectural details.

Our approach involve adding new word embeddings to the existing embedding matrix. Therefore,
to evaluate our approach, we compare it against a baseline adaptation method proposed in [3] that
initializes new word embeddings using an average of all existing embeddings. Initializing new
word embeddings for domain-specific tasks with small-norm random noise often leads to LMs only
generating the tokens which correspond to those new word embeddings, because the probability of
pre-expansion words can only decrease as the new partition function of the post-expansion LM can
only be larger than the old one. Hence, the post-expansion probability of an existing embedding is its
old probability multiplied by a factor smaller than one. Therefore, to initialize new embeddings for
Urban Dictionary lexical items, we average over all pre-expansion embeddings and use this as our
standard normal vector to construct a multivariate normal distribution which we sample from for each
novel word added to the tokenizer’s vocabulary. This bounds the KL divergence between pre- and
post-expansion distributions since the assigned probability of the new word cannot be higher than
1
n , so as the vocabulary size of the LM grows, the new word’s probability decreases. The sampled
embeddings are appended to the embedding matrix of our respective model. This model expansion
process is implemented on both GPT-2 (unidirectional) and RoBERTa (bidirectional).
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Figure 1: Training and Evaluation procedure for our approach

Both our approach and the baseline adaptation method involve adding new word embeddings to the
existing embedding matrix, however, it is a open question whether unseen lexical items from Urban
Dictionary require entirely new word embeddings, or if they can be approximated using subword
embeddings generated via Byte-Pair Encoding (BPE) tokenizers used by GPT-2 and RoBERTa. As
such, we will also be comparing our approach to the GPT-2 and RoBERTa pretrained LMs used
off-the-shelf with no adaptation, which will not involve adding any new word embeddings.

5 Experiments

5.1 Data

We made use of the two main datasets. First, the Urban Dictionary dataset, a preprocessed dataset
provided to us by our project mentor. The dataset contains 1,591,600 unique words, 2,606,521 total
definitions, and example sentences from Urban Dictionary. Second, a dictionary of common word
items, which is a preprocessed dataset provided to us by our mentor. It contains 147,306 common
words and their definitions, likely incorporated in the large-scale dataset used for pretraining the LMs.

5.2 Evaluation method

To evaluate our approach, masked language modeling involves masking over a specific word within
an input sentence and identifying the best candidate word from the model’s vocabulary that should
replace that masked word. As RoBERTa is a bidirectional model, we performed masked language
modeling with RoBERTa, going over every entry in our dataset and masking the respective word
within the provided example sentence and feeding the masked example sentence as input to the model.
Then we calculate the ranking of the respective word within the distribution of all possible logits in
the embedding space of RoBERTa, which is fetched by retrieving the index of the masked token from
the outputs. We calculate the average ranking of the respective words over the entire dataset along
with the total number of times that an urban dictionary word appears within the top 10, 100, 1000,
and 5000 most likely embeddings for its respective evaluation.

To evaluate the GPT-2 model, we could not perform masked language modeling and used a different
approach that leveraged causal language modeling because GPT-2 is a unidirectional model. Thus,
we had to condition on the initial part of the example sentence existing before the target word. To
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account for this, we instead sampled 50 embeddings from the embedding space of GPT-2 and masked
their respect tokens in place of the target word. We evaluated the perplexity of these 50 sample
sentences using their log likelihood and calculated the relative ranking of the target word within this
sampled distribution, reporting the top 5, 10, and 25 most likely embeddings for evaluation. Because
of the approach of sampling sentences was more computationally intensive than the masked language
modeling approach, we imposed a higher minimum upvote threshold (see Section 5.3) to reduce the
number of lexical items used for evaluation.

5.3 Experimental details

To finetune on common words to learn mappings from word definitions to embeddings, training
starts one of the two following pretrained models: the unidirectional GPT-2 Model transformer with
a language modeling head on top (linear layer with weights tied to the input embeddings) or the
bidirectional RoBERTa Model with a language modeling head on top. The initial set of word token
embeddings is loaded from the corresponding model. For training on the dictionary of common
words, we use the L2 loss function, a batch size of 8, a learning rate of 3e-5, optimized using the
Adam optimizer. We trained the model for 3 epochs, as 3 training epochs was what was feasible
given the timeframe and the recommended number of epochs for finetuning LMs is 2-4 epochs [11].

We run the following three experiments, comparing our approach to the respective baseline:

Experiment 1. We expanded the embedding matrix to incorporate 961 unique single-word lexical
items for GPT-2 and 5,383 unique single-word lexical items for RoBERTa. This primary experiment
incorporated Urban Dictionary lexical items consisting of a single word and tokenized as more than
one token (if a word was tokenized as one token, it was likely a common word disguised as a novel
word, and we did not add that word to the model). Our baseline was expanding the embedding matrix
with new embeddings for each new token, initialized using the averaging method.

Experiment 2. In this experiment, we incorporate terms from Urban Dictionary that have already
been learned by the base pretrained LM (i.e., tokens that already exist in the pretrained embedding
matrix). This is to demonstrate the benefit or learning the novel definitions of common words (e.g.,
"lit") that exist in regular dictionaries. For GPT-2 we evaluated on 546 single-word lexical items,
and for RoBERTa we evaluated on 3,363 single-word lexical items. Since this experiment involves
evaluation on tokens that the pretrained LMs already have in their vocabulary, our baseline was the
off-the-shelf GPT-2 and RoBERTa models, with no new tokens added.

Experiment 3. In this experiment, on top of novel single-word lexical items, we also add multi-word
lexical items from Urban Dictionary to demonstrate the benefit of learning the definitions of novel
phrases (e.g., "today years old"). For GPT-2, we incorporated 976 multi-word lexical items, and
for RoBERTa, we incorporated 9007 multi-word lexical items. Our baseline was expanding the
embedding matrix with new embeddings, initialized using the averaging method.

For all experiments, novel lexical items were filtered such that all items added had more upvotes than
downvotes, at least 5,000 upvotes for GPT-2, and at least 1,000 upvotes for RoBERTa for high-quality
definitions (see Section 5.2 for why differing number of unique lexical items were added).

5.4 Results

Below are the results for Experiment 1 (novel, single-word lexical items):

GPT-2 RoBERTa
Baseline Ours Baseline Ours

Top 5 123 175 Top 10 20 46
Top 10 287 371 Top 100 241 410
Top 25 758 734 Top 1000 2451 4660
Avg. Rank 25.53185 24.7931 Avg. Rank 2633.67000 2679.18237

Table 1: Experiment 1

Based on these results, our approach performs comparably or outperforms the baseline on all metrics.
Notably, for RoBERTa, our approach results in almost 100% increase in Urban Dictionary word
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appearances in the top k for k = 10, 100, 1000. Assessing the extent of improvement from the
baseline between the two models, RoBERTa generally did better than GPT-2, which suggests that a
bidirectional model is capable of more effectively learning word embeddings for novel lexical items
as it is able to utilize the context on both sides on the masked token, and not just the context preceding
the masked token, for prediction.

Below are the results for Experiment 2 (common single-word lexical items):

GPT-2 RoBERTa
Baseline Ours Baseline Ours

Top 5 55 78 Top 10 31 710
Top 10 130 147 Top 100 219 1499
Top 25 281 267 Top 1000 1169 3285
Avg. Rank 20.18329 20.32947 Avg. Rank 15191.21566 12724.65158

Table 2: Experiment 2

Based on the results, our approach performs comparably or outperforms the baseline on all metrics.
Notably, for RoBERTa, our approach results in approximately a 22x increase in word appearances
in the top 10, 7x increase in top 100, and 3x increase in the top 1000. Assessing the extent of
improvement from the baseline between the two models, the bidirectional RoBERTa model seems
capable of more effectively learning word embeddings for novel lexical items, for similar reasons to
Experiment 1.

Below are the results for Experiment 3 (novel single- and multi-word lexical items):

GPT-2 RoBERTa
Baseline Ours Baseline Ours

Top 5 26 19 Top 10 25 11
Top 10 103 188 Top 100 223 201
Top 25 548 595 Top 1000 2018 2175
Avg. Rank 23.5482932182 25.5260416667 Avg. Rank 4493.93757395 4435.44025015

Table 3: Experiment 3

Based on the results, our approach performs comparably or outperforms the baseline on most metrics.
The improvement from the bidirectional RoBERTa model over the unidirectional GPT-2 model is
not as significant here compared to previous experiments. The advantages of our appraoch may be
less apparent due to the more complex, compositional meanings that multi-word phrases, especially
novel ones, have. Overall, training language models to derive abstract, compositional meanings of
phrases and idioms is an active area of research [12], thus, further work can investigate more complex
approaches to handling multi-word, novel lexical items.

Collectively, the results suggest that the trained model from our approach has successfully learned
mappings from word definitions to word embeddings, for both novel lexical items as well as previously
learned words with novel meanings. That is, the model can predict word embeddings for unseen
single-word lexical items, and predicted embeddings can be used for downstream language inference
tasks. The results suggest that editing pretrained LMs to incorporate novel lexical items improve
the inference abilities of such LMs on sentences containing novel lexical items, and demonstrates
improved performance compared to using the existing token embeddings in off-the-shelf models with
no adaptation (as in Experiment 2).

All code for model training and evaluation can be found at this repository.

6 Analysis

For a qualitative analysis of our model, we examined the embedding space of Urban Dictionary
entries generated through our neural dependency pairing method. Although the newly created Urban
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Dictionary word embeddings did not exhibit strong correlations with relevant words to the same
degree as pre-trained RoBERTa embeddings, we observed that neural dependency parsing managed
to establish connections between novel terms. We scrutinized specific novel words added to our
tokenizer vocabulary and inspected those with high cosine similarity. We discovered that words
signifying geographic origins or individuals from respective regions, such as British, Manhattan,
California, and Peruvian, tended to cluster. Additionally, terms related to religiosity, like scientology,
creationist, and sacrelicious (a word denoting holiness with positive or negative connotations), were
found in proximity. Famous individuals, such as pop stars Beyonce, Adele, and Ariana, also exhibited
high cosine similarity. Interestingly, terms associated with social liberalism, including vegetarian,
pro-choice, California, Canadian, ACLU, and homosexual, formed closely clustered representations.
Derogatory expressions like dolt, stupid, lame, and jag (an annoying person lacking a social filter)
had smaller distances between them. Similarly, expressions of amusement, such as Lmao, lol, lolol,
and the smiley face emoticon ":)", were found to be closely related within the embedding space.

Overall, this suggests that our model was generally able to learn sensible similarity relations between
novel terms. The dissimilarity between novel words and relevant previously learned words could have
arisen from the nature of our approach that adds new tokens. Future work could look into modifying
existing tokens, or a hybrid approach of modifying existing tokens and adding new ones, to create a
more unified structure within the embedding space.

7 Conclusion

We present a novel supervised learning method for editing pretrained LMs to incorporate novel
lexical items from Urban Dictionary. Collectively, the results suggest that the trained model from
our approach has successfully learned mappings from word definitions to word embeddings, and is
able to predict word embeddings for unseen lexical items that can be used for downstream language
inference tasks. This approach addresses a pitfall that pretrained LMs have in adapting to lexical
shifts in language, as our results show that using the existing token embeddings in off-the-shelf
models with no adaptation causes performance to suffer. Thus, editing pretrained LMs to incorporate
novel lexical items improves inference on sentences containing novel lexical items.

An area that warrants additional research is handling words in Urban Dictionary, e.g. "dog", that
are not actually novel words. In Urban Dictionary, these terms may have the same definition as
the corresponding lexical item in a regular dictionary, or may have a novel slang definition, but
either way our method adds the word as a new token to the model, which may create redundancy
in our embedding matrix. Our results in Experiment 2 show that learning these novel meanings is
beneficial, so future work can look into instead concatenating the word’s Urban Dictionary definition
to its regular dictionary definition and tokenizing the concatenated definitions, using the model in
our approach to predict the new embedding, and replacing the corresponding embedding in the
embedding matrix with the predicted embedding.

Similarly, our model currently adds multi-word novel lexical items as new tokens to the model’s
tokenizer. It may not be most sensible to add a token consisting of multiple words, e.g. "day friend".
Phrases often consist of multiple common words, but when put together have a novel compositional
meaning. Future work can investigate instead updating the multiple individual word embeddings
in the tokenized phrase such that they implicitly represent the novel Urban Dictionary definition.
For instance, a new approach could tokenize the phrase as usual, then finetune the representations
at an intermediate layer once it has processed the meaning of the phrase to some degree, rather
than at the embedding layer where it’s still separate and non-contextual. Another approach would
involve performing masked language modeling on the synthetic sentence "[word]: [definition]." Such
approaches could also be applied to model editing to incorporate idioms and metaphorical meanings,
or more broadly investigate how pretrained LMs combine subparts (words or morphemes) to derive
more abstract or complex meanings.
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