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1 Introducing Hilbert’s 10th Problem

Let us set the historical context before Turing’s seminal work introducing the
concept of Turing Machines. In the 17th century, Gottfried Leibniz successfully
created one of the first mechanical calculating machines, which led him to
postulate a machine that could determine the truth values of mathematical
statements, which would require one to discover a formal language with which to
create such a machine. At the 1900 International Congress of Mathematicians,
David Hilbert proposed 23 unsolved problems to advance the study of mathematics
and determine ”what methods, what new facts will the new century reveal in
the vast and rich field of mathematical thought?”, of which the 10th problem
will be the focus of this paper:

10. Determination of the solvability of a Diophantine equation.
Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: to devise
a process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.

An alternative expression of the problem is as follows:

10. Determination of the solvability of a Diophantine equation.
Find an algorithm that decides, given a multivariate polynomial
equation f(x1, · · · , xn) = 0 with coefficients in the ring Z of integers,
whether there is a solution with x1, ·xn ∈ Z.

Hilbert wanted to investigate the potential of automating the decidability of
Diophantine solvability. Hilbert (1928) [1] further postulated the creation of “an
algorithm to decide whether a given statement is provable from the axioms using
the rules of logic”. This is known as the Entscheidungsproblem. Thus, Hilbert’s
10th Problem about Diophantine equations was broadened to a more general
question about mathematical statements in general: is there a universally valid
algorithm that can tell us if any algorithm will terminate? The answer to his
question required a more precise definition of ’algorithm’ and ’computation’,
which did not exist in 1900. Alonzo Church (1935-6) gave one of the earliest
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definition of effective computability based on λ-calculus, showing that there is
no algorithm to decide the equivalence of two given λ-calculus expressions.

2 Turing’s Work

After Church’s proof using λ-calculus, Turing’s seminal paper (1936-7) provides
an alternative response to Hilbert’s question, by conceptualizing the Turing
Machine. A Turing Machine can be described as a triple ⟨n,m, δ⟩ where n,m ∈
N represent the number of states and number of symbols respectively, and δ
is a partial function from {0, · · · , n− 1} × {0, · · · ,m− 1} to {0, · · · ,m− 1} ×
{0, · · · , n − 1} × {l, r} representing the instruction table mapping the current
state and current symbol to the next symbol, next symbol, and direction to
move the tape head (left or right). A Turing Machine consists of a finite
symbolic alphabet (including a ’blank’ symbol), finitely many sates (including
a designated ’start’ state), a two-way infinite tape with discrete cells (meaning
as many as is needed for computation; any halting computation uses a finite
subset), and a finite list of instructions with each of the form ”if in state i with
symbol j, write symbol k, go to state l, and move the tape head left or right”.

Turing’s proof idea was motivated by Gödel’s (1931) [2] invention of numbering
to logical formulas in order to reduce logic to arithmetic so as to prove his
incompleteness theorem. Using the concept of the Turing Machine, Turing
demonstrated that the halting problem is not computable (or decidable), which
decides whether a given Turing Machine halts or not. A sketch of the proof is as
follows: fix an encoding of programs as natural numbers and identify programs
with their associated integers (so that Turing Machines can be enumerated as
{M1,M2,M3, · · · }). Now, assume for the sake of contradiction the existence of
a Turing Machine H = Mi that decides the halting problem, i.e. returns 1 if and
only if a program p halts on input n. Using this program, we can build a new
Turing Machine Mj with the following property: for any n, Mj halts on input
n if and only if program n does not halt on input n. Set n to be the encoding
of Turing Machine Mj , and we reach a contradiction: Mj halts on input Mj if
and only if Mj does not halt on input Mj . Therefore, the assumption of the
existence of the decider for the halting problem, must be false. Therefore, no
Turing Machine exists that decides the halting problem, i.e., it is uncomputable.

The uncomputability of the Halting Problem was Turing’s negative answer
to Hilbert’s 10th Problem. Further, Turing showed that Turing Machines and
λ-calculus proposed by Church are equivalent models of computation. That is,
a function f is Turing-computable if and only if it is representable in λ-calculus.
This equivalence led to the Church-Turing thesis, which states that a function
is realistically computable if and only if it is computable by a Turing Machine.
Intuitively, this asserts that an algorithm is one which can be computed using a
Turing Machine, i.e. is a Turing Machine algorithm equivalent to a finite-length
computer program, where the computer is assumed to have unlimited memory.
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3 Matiyasevich’s Solution

3.1 Recursively Enumerable and Recursive Sets

To preface Matiyasevich’s Solution to Hilbert’s 10th Problem, we define computably
enumerable and computable sets, and an immediate consequence of their definitions,
as follows:

Definition 1: A set Q ⊆ Z is computably enumerable (i.e. recursively enumerable
listable) if there is an algorithm that prints the elements of Q when left running
forever (in any order and with repetitions permitted).

Definition 2: A set Q ⊆ Z is computable (i.e. recursive or decidable) if there
is an algorithm that decides membership in Q. In other words, there is an
algorithm that takes as input an integer n and returns true if n ∈ Q and false
if a ̸∈ Q.

Theorem 1: A set S is computable if and only if S and its complement S′ are
both computably enumerable.

Turing’s proof that the Halting Problem is undecidable therefore has an
important consequence:

Corollary 1: There exists a recursively enumerable set that is not recursive.

3.2 Davis-Putnam-Robinson-Matiyasevich’s Proof

Definition 3: A subset Q ⊆ Zk is Diophantine if there exists a polynomial
f(x1, · · · , xk, y1, · · · , ym) with integer coefficients such that

Q = {x⃗ ∈ Zk : ∃y1, · · · , ym ∈ Z : f(x⃗, y1, · · · , ym) = 0}

For instance, N is Diophantine over Z since

x ∈ N ⇔ ∃y1, · · · , y4 ∈ Z : y21 + · · ·+ y24 − x = 0

Davis-Putnam-Robinson-Matiyasevich proved the following:

Theorem 2 (DPRM Theorem): A set Q ⊆ Z is computably enumerable if
and only if it is Diophantine.
Proof: The first direction is simple: if Q ⊆ Z is Diophantine, then we can simply
write a program that looks through all elements f(k, y1, · · · , ym) ∈ Zm+1 and
prints k if f(k, y1, · · · , ym) = 0
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Proving the other direction is substantially more complex. Davis made the
first attempt by showing the following:

Theorem 2.1 (Davis’ Conjecture [3]): For every computably enumerable set
S, there exists a polynomial p(a, k, y, x1, ..., xn) such that a number a0 belongs
to S if and only if

∃y ∀k ≤ y ∃x1, · · · , xn (p(a0, k, y, x1, · · · , xn) = 0)

Such arithmetical representations of computably enumerable sets with a single
bounded universal quantifier is known as the Davis normal form, which was an
improvement of a previous fundamental result of G odel concerning the existence
of arithmetical representations of a general form for all listable sets. This seems
fairly close to the desired goal, however, getting rid of the universal quantifier
∀k ≤ y to achieve a Diophantine definition for the computably enumerable set
S turned out to be challenging.

Robinson attempted a different strategy by showing that exponentiation
is Diophantine, i.e., that the set of all triples {(a, b, c) ∈ N3 : c = ab} is a
Diophantine set. She ultimately proved the following hypothesis:

Theorem 2.2.1 (Julia Robinson (JR) Hypothesis): There exists a Diophantine
set (J) of pairs (a, b) such that

• if (a, b) belongs to J then b < aa

• for all k ∈ N, there exists a pair (a, b) ∈ J for which b > ak.

For instance, the set of pairs (a, b) where b = 2a satisfies these conditions. Thus,
the Diophantineness of exponentiation follows from the existence of a 2-variable
diophanetine relation of exponential growth. Therefore,

Theorem 2.2.2 (Robinson, 1952 [4]): Assuming the JR Hypothesis holds,
exponentiation if diophatine.

An exponential Diophantine equation is one in which the exponents are
variables as well, and an exponential Diophantine set is a set definable by an
exponential Diophantine equation. It naturally follows that if exponentiation is
Diophantine, then all exponential Diophantine sets are Diophantine.

Davis, Putnam, and Robinson then proved a weaker version of Theorem
2.1 (Davis’ Conjecture), and an intermediate version of the DPRM theorem for
exponential Diophantine equations:

Theorem 2.3 (Davis-Putnam-Robinson, 1961 [5]): Every computably
enumerable set is exponential Diophantine.
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Therefore, showing the truth of Theorem 2.2.1 (the JR Hypothesis) was key
to finishing the proof of the DPRM theorem, meaning one had to find the two-
variable Diophantine relation of exponential growth. Matiyasevich was able to
accomplish this using the Fibonacci numbers, and since the Fibonacci numbers
grow exponentially, they satisfy the conditions of the JR Hypothesis:

Theorem 2.4 (Matiyasevich, 1970 [6]): Let Fn be the nth Fibonacci number.
The relation m = F2n is Diophantine.

Theorem 2.4 completes the proof of the DPRM Theorem. Consequently, it
follows immediately from the DPRM Theorem that there is no algorithm that
decides Hilbert’s Tenth Problem:

Theorem 3 (H10): Hilbert’s 10th Problem is undecidable.
Proof: Let Q ⊆ Z such that Q is recursively enumerable but not recursive. By
the DPRMTheorem, Q is Diophantine with defining polynomial f(k, y1, · · · , ym).
If there exists an algorithm that decides Hilbert’s 10th Problem, we can simply
apply this algorithm to f to decide membership in Q. However, Q is not
recursive, so such an algorithm cannot exist. □

The theorem gives an improvement of Gödel’s incompleteness theorems by
specifying that the unprovable statement can be the assertion that a particular
Diophantine equation has no solution. The undecidability of Hilbert’s 10th

Problem has been a powerful tool for establishing numerous decision problems.
For instance, it is fundamental in providing undecidability of a domain R of
characteristic zero, via the following theorem:

Theorem 4: If Z is Diophantine over R, then H10/R is undecidable.
Proof: Assume for the sake of contradiction that H10/R is decidable, meaning
there exists an algorithm that decides H10/R. From this algorithm for H10/R,
we can get an algorithm for H10/Z: given a polynomial f(x1, · · · , xn) over Z,
we can use the algorithm for R to test whether f has a solution x1, · · · , xn in R,
since Z is Diophantine over R. We can use the Diophantine definition of Z to
add the necessary equations to indicate that the variables xi take integer values.
However, since H10/Z is undecidable, an algorithm for it does not exist, hence
H10/R where Z is Diophantine over R must also be undecidable. □

4 Open Questions

The generalized version of Hilbert’s 10th Problem is as follows:

Generalized H10: Find an algorithm that decides, given a multivariate polynomial
equation f(x1, · · · , xn) = 0 with coefficients in R, whether it has a solution with
x1, ..., xn ∈ R.
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Generalization of Definition 3: A subset Q ⊆ Rk is Diophantine over R if
there exists a polynomial f(x1, · · · , xk, y1, · · · , ym) with coefficients in R such
that

Q = {x⃗ ∈ Rk : ∃y1, · · · , ym ∈ R : f(x⃗, y1, · · · , ym) = 0}

The DPRMTheorem has shown that Hilbert’s 10th Problem is uncomputable
for R = Z. Shapiro & Shlapentokh (1989) [7] showed Hilbert’s 10th Problem
uncomputable for any integer ring of an algebraic number field F , with abelian
Gal(F/Q). Kim & Roush (1992) [8] also showed that it is uncomputable for
finite extensions of C(t1, t2, · · · , tn) for n ≥ 2. Additionally, Hilbert’s 10th

Problem is uncomputable for function fields of curves over finite fields [9], p-
adic function fields [10], large subrings of Q [11], and large subrings of number
fields [12]. Tarski (1930) [13], on the other hand, showed Hilbert’s 10th Problem
is computable for real closed fields (e.g. R = R) and algebraically closed fields.
Additionally, it is computable for finite fields and p-adic fields.

The biggest unsolved question with regards to Hilbert’s 10th Problem therefore
is whether or not it is computable for R = Q. The solvability of Hilbert’s 10th

Problem for C(t) (non-finite extension of C) is also an open question. An even
harder problem is determining the computability of Hilbert’s 10th Problem for
rings of integers in arbitrary number fields K: a recent result of Mazur & Rubin
(2010) [14] showed that it is undecidable for arbitrary rings of integers if the
Shafarevich-Tate conjecture [15] holds.
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PHIL 152 Final Presentation - Olivia Lee
Handout: Hilbert’s 10th Problem

David Hilbert proposed 23 unsolved problems to advance the study of mathematics
and determine ”what methods, what new facts will the new century reveal in
the vast and rich field of mathematical thought?”. The 10th problem is:

10. Determination of the solvability of a Diophantine equation.
Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: to devise
a process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.

Alternatively:

10. Determination of the solvability of a Diophantine equation.
Find an algorithm that decides, given a multivariate polynomial
equation f(x1, · · · , xn) = 0 with coefficients in the ring Z of integers,
whether there is a solution with x1, ·xn ∈ Z.

In simple terms: can we automate the decidability of Diophantine solvability,
or solvability more generally? Is there a universally valid algorithm that can
tell us if any algorithm will terminate? (Entscheidungsproblem)

Turing’s proof of the undecidability of the Halting problem is a negative
answer to this question. This presentation focuses on the solution jointly developmed
by Davis, Putnam, Robinsom, and Matiyasevich.

Davis-Putnam-Robinson-Matiyasevich’s Proof

Definition 1: A set Q ⊆ Z is computably enumerable (i.e. recursively enumerable
listable) if there is an algorithm that prints the elements of Q when left running
forever (in any order and with repetitions permitted).

Definition 2: A set Q ⊆ Z is computable (i.e. recursive or decidable) if there is
an algorithm that decides membership in Q. There is an algorithm that takes
as input an integer n and returns true if n ∈ Q and false if a ̸∈ Q.

Theorem 1: A set S is computable if and only if S and its complement S′ are
both computably enumerable.

Corollary 1: There exists a recursively enumerable set that is not recursive.
(Consequence of Turing’s proof that the Halting Problem is undecidable.)
Definition 3: A subset Q ⊆ Zk is Diophantine if there exists a polynomial
f(x1, · · · , xk, y1, · · · , ym) with integer coefficients such that

Q = {x⃗ ∈ Zk : ∃y1, · · · , ym ∈ Z : f(x⃗, y1, · · · , ym) = 0}
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For instance, N is Diophantine over Z since x ∈ N ⇔ ∃y1, · · · , y4 ∈ Z :
y21 + · · ·+ y24 − x = 0.

Theorem 2 (DPRM Theorem): A set Q ⊆ Z is computably enumerable if
and only if it is Diophantine.
Proof: The first direction is simple: if Q ⊆ Z is Diophantine, then we can simply
write a program that looks through all elements f(k, y1, · · · , ym) ∈ Zm+1 and
prints k if f(k, y1, · · · , ym) = 0. Proving the other direction is substantially
more complex. Davis made the first attempt:

Theorem 2.1 (Davis’ Conjecture): For every computably enumerable set
S, there exists a polynomial p(a, k, y, x1, ..., xn) such that a number a0 belongs
to S if and only if ∃y ∀k ≤ y ∃x1, · · · , xn (p(a0, k, y, x1, · · · , xn) = 0).

Robinson’s strategy was to show that exponentiation is Diophantine, i.e.,
the set of all triples {(a, b, c) ∈ N3 : c = ab} is a Diophantine set.

Theorem 2.2.1 (Julia Robinson (JR) Hypothesis): There exists a Diophantine
set (J) of pairs (a, b) such that if (a, b) belongs to J then b < aa, and for all
k ∈ N, there exists a pair (a, b) ∈ J for which b > ak. (The the set of pairs (a, b)
where b = 2a satisfies these conditions.)

Theorem 2.2.2 (Robinson, 1952): Assuming the JR Hypothesis holds,
exponentiation if diophatine.

Theorem 2.3 (Davis-Putnam-Robinson, 1961): Every computably enumerable
set is exponential Diophantine.

Finishing the proof involves finding the two-variable Diophantine relation of
exponential growth. Matiyasevich does this using the Fibonacci numbers:

Theorem 2.4 (Matiyasevich, 1970): Let Fn be the nth Fibonacci number.
The relation m = F2n is Diophantine.

This completes the proof of the DPRM Theorem. It follows that there is no
algorithm that decides Hilbert’s Tenth Problem:

Theorem 3 (H10): Hilbert’s 10th Problem is undecidable.
Proof: Let Q ⊆ Z such that Q is recursively enumerable but not recursive. By
the DPRMTheorem, Q is Diophantine with defining polynomial f(k, y1, · · · , ym).
If there exists an algorithm that decides Hilbert’s 10th Problem, we can simply
apply this algorithm to f to decide membership in Q. However, Q is not
recursive, so such an algorithm cannot exist. □
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