
Model Predictive Curiosity for 
Self-Supervised Dynamics Models

Motivation

→ A crucial element of child psychological 
development is play (with objects like blocks, 
toys, etc.) -  learn about the physical dynamics 
of objects and environments around them 
through interaction and observation.

→ Developing auxiliary reward that 
encourages unconstrained exploration is the 
computational analog of this process

- Agent explores an environment and takes 
actions that are not conditioned on any 
particular end-goal. 

→ Key Question: How does active exploration 
and self-supervised learning facilitate the 
learning process of reinforcement learning 
agents?

- Modeling process of active exploration 
and self-directed learning, so as to 
develop AI agents capable of learning 
flexibly and robustly in a similar way.

Model Predictive Curiosity (MPCu)

→ A framework inspired by the Model Predictive 
Control (MPC) paradigm which maps state-action 
pairs to curiosity values, thus predicting the error 
in the forward prediction model. 

→ Model backpropagates from the predicted 
curiosity value to select the action which would 
maximize this value.
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Methods

→ Goal implementation in NVIDIA’s IsaacGym physical 
simulation environment (Fig. 1a), Box2D used for 
testing. Model uses object-centric embeddings to 
represent arm/environment (Fig. 1b)

→ Dynamics model uses sequence-to-sequence 
forward prediction (Fig. 2), incorporated into MPCu for 
sequence-to-sequence-based curiosity estimation

- Samples several rollouts from dynamics model, to 
compute expected loss over multiple timesteps. 

- Maximize predicted loss in dynamics model using curiosity 
value as optimization target for gradient ascent. 

- Like MPC, predict future world state at time t+1 and 
predicted loss (L2 pose estimation error). 

- From prediction target, perform gradient ascent via 
backpropagation through dynamics model into candidate 
joint torques → choose joint torques which maximally 
antagonize dynamics model.

→ Can directly leverage dynamics model for control by 
performing traditional MPC

- Ignore forward pass through curiosity model 
- Use the desired world state as the optimization target for 

gradient ascent, to minimize the delta between desired 
and predicted world state.
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Discussion

→ MPCu is capable of directly optimizing for high 

curiosity action values

→ In the simple environment, MPCu enriches 

forces that cause multi-object interactions

→ MPCu depends on the predictive power of the 

model, accuracy of the curiosity prediction 

network, and the inductive bias for action selection 

(initialize action on the objects)

Conclusion & Future Work

→ Performance of system hindered by dynamics 

model choice, more work is needed to develop a 

good dynamics model for MPCu

→ Extend experiments to IsaacGym environment 

and embodied Box2D environment

→ Incorporate longer horizon rollouts into action 

selection phase
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Pre-MPCu optimization 
of action trajectory

Post-MPCu optimization 
of action trajectory

Results

→ Generated 50000 training scenarios of a force being applied to a 

circle adjacent to a tower in a Box2D environment

→ Trained a dynamics model to predict forward motion of circle, and a 

curiosity model to predict the loss in the dynamics model

→ At test time, used a backward pass through the curiosity model 

into the action space to perform gradient ascent on the force vector 

(not origin of the force, which was fixed to the circle)

https://docs.google.com/file/d/1qH1d2t2exd5N2tRzYnn4qKSOwzI5xkNF/preview
https://docs.google.com/file/d/1TZ-YWncMZZDr4oosx_Gip3tTMyvhXi5r/preview

