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1 Motivation

Children develop internal models about physical [1] and social [2] dynamics to learn how to interact
with the world. A crucial element of child psychological development is play (with objects like blocks,
toys, etc.), which is an active, intrinsically-motivated activity through which children learn about the
physical dynamics of objects and environments around them through interaction and observation [3].
Therefore, developing an auxiliary reward that encourages exploration in an unconstrained setting is
the computational analog of this process, where the agent explores an environment and takes actions
that are not conditioned on any particular end-goal. We hope to see how active exploration and
self-supervised learning facilitates the learning process of reinforcement learning agents.

Our study is interested in modeling this process of active exploration and self-directed learning, so as
to develop artificial intelligence (AI) agents capable of learning flexibly and robustly in a similar way.
We present Model Predictive Curiosity (MPCu), a framework inspired by the Model Predictive
Control (MPC) paradigm which maps state-action pairs to curiosity values, thereby predicting the
error in the forward prediction model. Our model then backpropagates from the predicted curiosity
value to select the action which would maximize this value.

2 Related Work

Prior work has investigated curiosity-driven, closed-loop system that learns forward object dynamics
self-supervised and without any human and studying curiosity with regards to physical object
manipulation [4] [5]. However, one limitation in this line of previous work is the inefficient sampling-
based mechanism for action selection.

The primary advantage of the MPC approach is that it requires minimal human involvement and can
learn in an entirely self-supervised fashion, without a detailed reward function, goal image, or ground
truth object pose information. In the canonical instantiation of the MPC algorithm [6], the algorithm
enables a robotic agent to plan for actions that move a user-specified object to a user-defined location.
It then evaluates the candidate action sequence and chooses the action that maximizes the distribution
over the designated pixel’s position. As a result, the agent’s actions are continuously re-planned as
the agent executes the task moves to new states. This work uses a convolutional LSTM to predict
future camera images and image-space pixel flow. However, low resolution images may not have the
best object representation, which limits the predictive power of the algorithm. Our method draws
inspiration from this study and aims to develop a more efficient way of selecting actions to train the
forward model.

Our study also draws inspiration from prior research in visual interaction networks [7]. In this study,
a visual interaction network is used to generate future trajectories of objects in a physical system
from video frames of the system. The network consists of three main components: the visual encoder,
which is a convolutional neural network that produces a state code from a sequence of three images,
the dynamics predictor, which takes a sequence of state codes and predicts the candidate state code
for the next frame, and the state decoder, which converts a state code to a state.
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3 Methods

(a) Sample IsaacGym environment with robotic arm,
tabletop, and hard block.

(b) Simplified environment: 2-DoF robotic arm,
tabletop, and sphere

.
Figure 1: (a) IsaacGym and (b) simplified environment illustrations

Our proposed dynamics model primarily involves object-centric embeddings. We aimed to use
NVIDIA’s IsaacGym physical simulation engine for an embodied environment comprising of a
robotic arm on a tabletop with a variety of potential objects, illustrated in Figure 1a above. Figure 1b
illustrates a simplified version of our environment for the purposes of establishing notation, consisting
of a robotic arm with two degrees of freedom on a tabletop with a single spherical object. For testing,
we use a simplified Box2D environment, a 2-Dimensional physics engine for games. The robot arm
features primarily pertain to the robot arm’s joint states: each qi represents the joint state of joint i,
and ∂qi represent the angular velocities of each joint. In Figure 1b, the robotic arm with two degrees
of freedom has two joints, with states represented by q0 and q1 and angular velocities ∂q0 and ∂q1
respectively. For all other objects (e.g. the table, spherical, etc. objects), every object is defined
by their kinematic features involving its position in 3-D space (x, y, z), linear velocity (∂x, ∂y,
∂z), rotation (roll r, pitch p, yaw Y ), rotation of angular velocity (∂r, ∂p, ∂Y ), and categorical ID
(which contains object-specific shape information, as our model does not use parameterized shapes).

Figure 2: Proposed dynamics model using sequence-to-sequence based forward prediction on
object-centric embeddings
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Using this object-centric embedding framework, our dynamics model engages in sequence-to-
sequence based forward prediction, inspired by sequence-to-sequence language models (Figure
2). The object states at time t (as defined in Figure 1b) are fed into embedding networks spe-
cific to each category of object, generating the object embeddings corresponding to the provided
states. These object embeddings are then fed into a cross-attention transformer model, which out-
puts the predicted object embeddings at the next timestep t + 1. The predicted embeddings are
then fed into category object-specific decoding networks to recover the object states at time t+ 1.

(a) MPCu: sequence-to-sequence-based curiosity estimation

(b) Sequence-to-sequence based model predictive control
.

Figure 3: Proposed methods for (a) MPCu and (b) traditional MPC

Our proposed method is Model Predictive Curiosity (MPCu) using sequence-to-sequence-based
curiosity estimation (Figure 3a). By sampling several rollouts from the dynamics model, we can
compute expected loss over multiple timesteps. We can them maximize the predicted loss in the
dynamics model using the curiosity value as the optimization target for gradient ascent. Like model
predictive control, we predict both the future world state at the next timestep t+ 1, along with the
predicted loss as measured by the L2 pose estimation error. From the prediction target, we perform
gradient ascent via backpropagation through the dynamics model into the candidate joint torques, in
order to choose a set of joint torques which maximally antagonize the dynamics model.
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We can also directly leverage our dynamics model for control by performing traditional model
predictive control, as shown in Figure 3b. In this mode, we ignore the forward pass through
the curiosity model and use the desired world state as the optimization target for gradient ascent,
specifically to minimize the delta between desired world state and predicted world state.

In sum, we train our dynamics model using the curiosity value function as our initial optimization
target for gradient ascent. We then exploit the trained model at test time to adopt the standard
model predictive control paradigm, differentiating back into candidate joint torques to minimize the
divergence between the desired and predicted world states.

4 Results & Discussion

We use the Box2D environment to test a simplified version of our proposed model, rendered using
PyGame. In a Box2D environment, we generated 50,000 training scenarios of a force being applied
to a circle adjacent to a tower of three squares. We then trained a dynamics model to predict the
forward motion of circle based on a single timestep, and a curiosity-based model to predict the loss
in the aforementioned dynamics model.

At test time, we performed a backward pass through the curiosity-based model into the action space,
and performed gradient ascent on the force vector that is applied to the circle to select the force (i.e.
action on the circle) that maximizes this curiosity value. Note that this force vector is distinct from
the origin of the force, which is always fixed to the center of the circle.

(a) Curiosity Model Loss (b) Dynamics Model Loss
.

Figure 4: Loss curves for (a) curiosity model and (b) dynamics model

(a) Pre-MPCu Optimization Trajectory

(b) Post-MPCu Optimization Trajectory

Figure 5: Trajectories based on rollouts (a) pre-MPCu and (b) post-MPCu
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We observe that the training losses for both the curiosity-based model and the dynamics model
converge at ∼ 20,000 steps, as seen in Figure 4a and 4b respectively. This demonstrates the success
of the MPCu approach in learning successive prediction models for the forward motion of the circle
and loss of the dynamics model.

We can also engage in a more qualitative assessment of the model’s performance by comparing the
forward motion of the circle before and after optimization of the circle’s trajectory with MPCu. We
see that unlike the motion of the circle away from the tower of squares without interacting with
them (Figure 5a), the circle proceeds to "knock over" the tower of three squares after training with
MPCu in a manner consistent with our traditional understanding of physical dynamics (Figure 5b).
Therefore, we see that the forward motion of the circle is able to optimize for high curiosity action
values, enhancing exploration through interactions between objects.

Hence, we see that in this simplified Box2D environment, MPCu enriches vector forces that cause
multi-object interactions. Furthermore, the performance of MPCu depends on three main factors:
the predictive power of the forward dynamics model, the accuracy of the curiosity-based prediction
network, and the inductive bias for action selection which initializes actions on the objects.

5 Conclusion & Future Work

We demonstrate that our proposed MPCu approach succeeds in facilitating exploratory multi-object
interactions in a 2D environment. We implement this approach by first training a forward dynamics
model and curiosity model to predict the motion of a primary subject and the loss in the dynamics
model respectively, then backpropagating from the predicted curiosity value to select actions that
maximize this value.

Given these promising observations in the simplified Box2D environments, a natural next step is
to extend these experiments to an embodied 3D environment using NVIDIA’s IsaacGym physics
simulation engine. This will allow us to add complexity to our model as the embodied 3D environment
has a higher dimensional action space (as opposed to a 2D action space of force vectors) for a robot
arm with multiple degrees of freedom, as well as a larger variety of objects with different physical
properties. This makes both forward prediction and backpropagation into the action space more
complex, and will be an important step to seeing if MPCu can be applied to areas such as robotics
that engage with high dimensional action spaces.

In addition, the performance of the system is hindered by the choice of dynamics model, which
remains fairly simple in the Box2D environment. Future work in developing a robust dynamics model
for MPCu, for instance by incorporating sequence-to-sequence based forward prediction as outlined
in Figure 2, can further enhance the performance of the MPCu approach.

Finally, another extension to this project can involve incorporating longer horizon rollouts into the
action selection phase. The current approach uses a single timestep, which is appropriate given the
frame rate of the simplified environment. However, especially for more complicated environments
such as embodied 3D environments, action selection over trajectories and not just based on one
timestep will be important for optimizing action selection.

Overall, our proposed curiosity-based MPCu approach shows promising effects in facilitating ex-
ploration of physical object dynamics in a 2D environment, and results in interesting qualitative
behavior in multi-object interactions in a 2D environment. Future research should focus on scaling
this approach to incorporate more complex predictive and action-selection models, which in turn
facilitates its applicability to more complex environments with higher dimensional action spaces.
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