A Shot in the Dark:
Modeling Improved Zero-Shot and Few-Shot Transfer Learning with
Self-Supervised Models for Sentiment Classification

Project Category: Natural Language
Project Mentor: Proposal Graded by Ananya Kumar

Name: Anwesha Mukherjee Name: Olivia Lee Name: Raj Palleti
SUNet ID: anwesham SUNet ID: oliviayl SUNet ID: rpalleti
Department of Computer Science Department of Computer Science Department of Computer Science
Stanford University Stanford University Stanford University
anwesham@stanford.edu oliviayl@stanford.edu rpalleti@stanford.edu

1 Key Information to include

Anwesha and Raj submitted a related project for CS230| which shares the data preprocessing and we take results from
the DistilBERT experiements.

2 Introduction

Large language models, or more recently coined foundation models, have become increasingly prevalent in AI [1]].
There has been a growth in the application of transfer learning techniques to these models, which refers to the ability
to fine-tune a transformer model for one task and adapt it’s use to another. This helps solve the small data problem,
where some domains may lack processed data to directly tune a model, and thus, finding a similar frame of data,
can be used to adapt to the domain in what’s known as domain adaptation. Such transfer learning tasks have been
successfully demonstrated on BERT, especially for cross-lingual transfer [2][3][4]. However, previous investigations
have revealed that deep models struggle with up-to-par performance in transfer for sentiment analysis without similar
corpuses in context [S]] [6l]. Therefore, we aimed to see if we can effectively model transfer learning without attention,
testing different machine learning, deep learning, and self-supervised techniques to optimize performance on binary
sentiment classification and compare to DistilBERT, a portable BERT model. We wanted to definitively determine if
scale and attention mechanisms in current language models truly offer a clear advantage for transfer, the purpose of
their development. We use various binary sentiment classification datasets text inputs and binary label outputs (positive
or negative, processed according to model) with variability tested on size, vocabulary size, difference in domain, and
polarity to better understand influences on transfer capabilities.

3 Related Work

Traditionally, sentiment analysis can use lexicon-based approaches which judge sentiment polarity by constructing
an emotional dictionary, extracting emotional values from inputs. Proposals included using sentiment polarity to
analyze the tendency of text sequences for a sentiment [[7]], generating a dictionary of positive and negative sentiment
words from seed words in WordNet which banks the most common words for various mathematical relationships that
determine positive or negative sentiment [8]], using supervised learning to form an opinion lexicon [9], and a SO-PMI
function-based algorithm calculates semantic orientation of an input based on positive and negative-leaning words [[10].
However, the lexicon approach relies entirely on a sentiment dictionary, which ignores positional connections and does
not learn on any relational terms including different conjugations of a word. Other baselines standardly use Naive Bayes
and SVM, but these two don’t have any framework to operate beyond zero-shot transfer without a validation scheme
and rely on exact vocabularies [J5].

Previous surveys of sentiment analysis domain adaptation found that the gap in domain material poses a major challenge
for positive transfer. As an example, a model trained by a film review corpus will have poor performance when used to
analyze restaurant reviews due to excessive difference between the domains [5]]. Other past work even found examples
of negative transfer when input and output data wasn’t similar enough with complete sequential learning that simply
trains upon an existing dataset [6]. However, these researchers further suggested focusing on three areas of transfer:
parameter, instance, and feature representation [5]. Parameter transfer involves leveraging the parameter sharing model
of the source and target domains, transferring the trained model parameters in large number of datasets to the target
task, which we adopted in this project. Feature transfer representation is used when source target domains have part
crossover features. One can transform data from the two domains into the same feature space and perform traditional
machine learning. We drew inspiration from feature representation transfer in our use of DistilBERT and word2vec.

Stanford CS229 Machine Learning

https://drive.google.com/file/d/1Ct36Wf-v0NQ5pRG9R8c87DOmD7AI02-S/view?usp=sharing

4 Dataset and Features ~ (.5-1 pages

We used the following 4 datasets for evaluating the performance of transfer learning: 1) SOK IMDb Movie Reviews, 2)
9K tech product review tweets, 3) 50K |general domain polar tweets, and 4) SOK Rotten Tomatoes movie reviews. For
the IMDB, Rotten Tomatoes, and Social Twitter datasets, we used an 80-10-10 split for training, validation, and testing.
After processing, our data included an input string and a label (either positive or negative sentiment).

I thought this was a wonderful way to spend time | positive
This movie was a total waste of time. Hated it. negative

Additionally, while sampling, we ensured we’d have reproducible and identical few-shot samples across models by
using the same random state. We sampled to ensure we used less than 20% of available data, in 3/4 cases 5% of
available data would be augmented atop training data.

For feature testing, we developed trained embedding matrices for an embedding layer using word2vec with the
continuous bag of words (CBOW) framework. CBOW predicts a center word from surrounding context in terms of
word vectors with a feed-forward, window-limited neural network (here we use window size 7), given tweet parsed (300
max. length) inputs after processing for the LSTM. CBOW word2vec constructs an input word vector: V € R** IV,
and an output word vector: U € RIVI*" that are optimized using stochastic gradient descent:
argmin/ = —log P (wc | We—my -+ oy We—1yWet1y -0+, wc+m)
Ue,Vj
= _IOgP(uc | @>
exp (uCTf/)

Z‘j@l exp (ufﬁ)
V]

= fuff; + log Z exp (u]Tf))
j=1

—log

based on the cross entropy loss function H (¢, y) = — ZL‘QI y; log () [11]l. This pre-establishes an embedding matrix
for the embedding layer that can be frozen.

5 Methods

We strived to test a machine learning algorithm with integrated validation, a deep learning algorithm (without a vanishing
gradient risk), and a deep learning algorithm with a self-supervised learning component. Thus, we tested implementing
a validation scheme within logistic regression, an LSTM, and an LSTM with word2vec initialized embeddings.

5.1 Logistic Regression

We implement the standard logistic regression model with gradient descent on € using the training set, with the addition
that in every iteration, we calculate the accuracy metric on the validation set and decreased the learning rate (multiplying
by a factor of 0.9) if the validation accuracy was decreasing. This allowed us to effectively check for overfitting to
the source domain in transfer learning with controlled learning based on the target data for gradient management and
smoothen out learning to better approach a validation loss minimum. We also had an additional early stopping condition
if the change in validation accuracy is within a small threshold (e = 1 x 107?) to further avoid overfitting.

52 LSTM
In our LSTM model we have the inputs converted into their embeddings with sparse dropout before an LSTM layer of
100 cells (downsize dimensions by 3 from embeddings with width of 300)[T]

Input Embedding
(I

Q Sparse
Dropout LSTM w/ Dropout
O ® ® (@)
O T ? (T Fully Output
! onnecte!
O_> = A 3 ff A = c Layec: ? _>O
O [é (Sigmoid)
[| [
() ® ® ©
()

Figure 1: Diagram detailing the architecture of the LSTM employed

https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.kaggle.com/datasets/jp797498e/twitter-entity-sentiment-analysis?select=twitter_training.csv
https://www.kaggle.com/competitions/sentiment-analysis-on-movie-reviews/overview

Zooming in on the individual cells of the LSTM, we can see the forget gate (f), candidate layer (C), the input gate (1),
and output gate (O) at a given timestep as single-layer feed-forward neural networks with sigmoid activation, with the
exception of the candidate layer which uses a tanh activation function. At any stage of the LSTM, inputs are the current
input: Xy, the previous hidden state: H;_;, and the previous memory state: C;_; to output a the current timestep’s
hidden: H,; and memory: C, states[2] The element-wise multiplication with the forget gate allows important gradients
to be retained, and unimportant gradients to be passed without impact which avoids the vanishing gradient problem.

= Element-wise multiplication
LSTM Network = Element-wise addition
~

\

ft = 0 (Xe* U+ Hea* W)

@ Cr =tann(Xy * Ut Heg* W)

Ct-1
lt = 0 (X¢* U+He* W)
Ot = 0 (Xt * Ust He1™ W)
w C = fe* Coq# 1t * Gt
Hta

Ht p = 0¢* tanh ()

U Xt = Input vector
Ht.1= Previous cell Output W, U = weight vectors for forget gate (f),
Ce1= Previous Cell Memory candidate (c), i/p gate (1) and o/p gate (O)

Ht = Current cell Output Note : These are different weights for different
Ct = Current cell Memory gates, for simpicity's sake, | mentioned W and U

Figure 2: Single cell of an LSTM

6 Experiments/Results/Discussion

Given the task was a binary sentiment classification task without an objective priority for one label over the other,
accuracy served as our primary metric, though we generated confusion matrices for the LSTMs and evaluated precision,
recall, and F1 to better understand variance in learning performance. All graphs, focus on accuracy, as it was ultimately
the most representative for primarily evenly distributed and valued data in opposition to a task like Named Entity
Recognition where the f1-score is most reflective.

Accuracy = TP+ 1N

TP+TN+ FP+ FN
Precision = L

TP+ FP

TP
Recall = TP-|-—FN

2 x Precision x Recall

Fl-score =

Precision + Recall

6.1 Logistic Regression with Validation

Logistic Regression with validation tends to perform more poorly than other models. However, it notably transfers
much better to smaller target datasets, like the Twitter Product dataset. In general, performing transfer learning from a
larger to a smaller dataset usually works better than the converse.

Transfer Learning Using Logistic Regression
1.00 B IMDb Finetune
M Data -> IMDb Zero-Shot
Data -> IMDB Few-Shot
B Data Finetune
M IMDB -> Data Zero-Shot

0.50 M IMDB -> Data Few-Shot

Accuracy

* - Best
M - 2nd Best

0.00
Twitter Twitter Product Rotten Tomatoes

Figure 3: Accuracy values for transfer learning using logistic regression with validation

6.2 LSTM

LSTMs perform well in transfer learning for most tasks, almost always outperforming logistic regression. The LSTM
outperforms all other models in fine-tuning for the Twitter Product dataset, which is the smallest dataset, indicating that
LSTMs may work better than large deep learning models if the dataset is small. Performance particularly improved on
transfer, likely due to better contextual learning.

Transfer Learning Using LSTM
100 W IMDB Finetune
M Data -> IMDb Zero-Shot
Data -> IMDB Few-Shot
W DataFT
M IMDB -> Data Zero-Shot
050 IMDE -> Data Few-Shat

Accuracy

Twitter Twitter Product Rotten Tomatoes

Dataset

Figure 4: Accuracy values for transfer learning using LSTM

6.2.1 Architectural Decisions

Sigmoid Activation: Unlike most deep learning models, because of the forget gate in an LSTM handling the vanishing
gradient, sigmoid functions are often more balanced. In testing for finetuning on both IMDb and Twitter Product data,
the sigmoid function outperformed GeLU, tanh, and ReL U activation functions, so we chose to maintain it. This made
sense given the structure of sentiment analysis, which operates on a binary that should have polarity in both directions
for O to 1 scaling.

Sparse Dropout: In order to avoid embedding training that is non-contextual, we opted to use sparse dropout rather
than direct dropout due to the realization that the model was retaining randomized gradients which could muddle
information, especially when word2vec initialized. We still maintained recurrent dropout within the LSTM for weight
adaptation to account for individual relationships without negatively altering the embedding layer in training.

Decay and Early Stopping: After initial testing, we determined that convergence would always occur prior to 32
epochs, but often, the best model would be passed over and the gradient wouldn’t be able to centralize. Thus, we added
in decay according to validation loss by testing for plateau, maintaining patience of 2 epochs to ensure the gradient
was in-fact overshooting by a scale of 10. In the future, it may be valuable to test epoch-based decay with patience.
Additionally, if the validation accuracy didn’t improve after 5 epochs (patience = 5), then we utilized early stopping
callback as it appeared the model had reached either convergence or some form

6.2.2 Different Embedding Structures

Similar to DistilBERT where we found better performance when attention layers were also tuned, we decided to
try different patterns of embedding the inputs and testing if frozen pretrained word embeddings would help or hurt
performance as a self-supervised component.

Trainable Zero Intialization[d; Operating on the standard LSTM, we initialized zero-vector embeddings for an empty
embedding matrix that was only modified. The model was the most adaptable, though it frequently took more epochs to
converge particularly for transfer.

Pretrained word2vec[5; When freezing the embedding layer, much of the model’s adaptability was lost with firm
input schemes entering the LSTM reducing the impacts of the gradient in learning. This led to poorer convergence in
many cases since the model was being simplified, though in the case of Twitter to IMDb zero-shot learning, there was
substantial improvement due to large vocabulary variance of the twitter sentiment dataset which encodes many of the
necessary word associations for imdb data.

Trainable word2vec|6: Similar to BERT, we then further considered word2vec initialized matrices that are optimized
to account for new words and associations as a result of the validation data. This, however, can have adverse effects
because associations originally learned can be altered when training. In this case, it seems the trainable word2vec is
particularly a better initialization when corpora are similar as with Rotten Tomatoes and IMDb data.

6.3 DistilBERT

Operating as an oracle, using results from CS230, the DistilBERT was found to be optimized for fewshot learning with
default parameters. In testing the design of the LSTM we tried to match parameters, but found that different parameters
worked best, but even so, DistilBERT outperformed the LSTM on all but 1 out of 16 metrics (IMDDb finetune repeats 3
times on graph for uniformity).

Transfer Learning Using LSTM With Frozen Word2Vec Embeddings

1.00 W IMDb Finetune
W Data -> IMDb Zero-Shot
Data -> IMDB Few-Shot
M Data Finetune
@ IMDB -> Data Zero-Shot
050 I IMDB -> Data Few-Shot

Accuracy

*

Twitter Twitter Product Rotten Tomatoes

Dataset

Figure 5: Accuracy values for transfer learning using LSTM with frozen word2vec embeddings

Transfer Learning Using LSTM With Trainable Word2Vec Embeddings
1.00 M IMDb Finetune
W Data -> IMDb Zero-Shot
Data -> IMDB Few-Shot
B Data Finetune
W IMDB -> Data Zero-Shot
050 1 IMDB -> Data Few-Shot

Accuracy

0.00
Twitter Twitter Product Rotten Tomatoes

Figure 6: Accuracy values for transfer learning using LSTM with trainable word2vec embeddings

Transfer Learning Using DistiiBERT
1.00 B IMDB Finetune
B Data -> IMDb Zero-Shot
Data -> IMDB Few-Shot
0.75 B Data Finetune
@ IMDB -> Data Zero-Shot

W IMDB -> Data Few-Shot
0.50

Accuracy

0.25

Loy e

Twitter Twitter Product Rotten Tomatoes

0.00

Dataset

Figure 7: Accuracy values for transfer learning using DistilBERT

7 Conclusion/Future Work

DistilBERT outperformed all other models for most tasks, demonstrating the utility of large language models for transfer
learning. Pretrained attention schemes likely play large role in success of DistiIBERT. We find that transfer learning
works better when transferring from a larger dataset to a smaller dataset, and that having a larger vocabulary is generally
better for transfer. Surprisingly, data polarity didn’t play an important role in comparison to vocabulary variance and
size. From our experiments involving word2vec embeddings, we find that frozen word2vec embeddings severely
limit model adaptability, and using zero-initialized or word2vec trainable embeddings performs better in different
contexts. This is because there is a risk of overfitting to the training set when using trainable word2vec embeddings,
especially if the train data and test data are selected from different contexts. We also find that using trained embeddings
from word2vec often reached convergence quicker than zero initialization regardless of performance. This is due to
immediate gradient impact and closer positioning to minimum loss. Finally, for logistic regression, we find that the lack
of a validation gradient hurts performance.

Future research may include testing transfer learning on Rotten Tomatoes with frozen word2vec embeddings, as
zero-shot transfer improved by 4% in accuracy when augmenting the text8 (sampled Wikipedia data) corpus, which
simulates pretrained embeddings. We may also further experiment with different activation functions (e.g. GeLU,
ReLU) within the LSTM cells rather than the fully connected layer to match DistilBERT and sharpen prediction
boundaries. Finally, we could try stacking LSTMs to form a more portable attention model.

8 Contributions

In code, Anwesha worked on the data preprocessing, Anwesha and Raj worked through the LSTM models architecture,
where Raj conducted tests before Anwesha added Word2Vec (with frozen and trainable word embeddings) to conduct
additional tests. Olivia worked on the code for transfer learning for logistic regression. Raj constructed logistic
regression and MLP baselines, Olivia worked on SVM, and Anwesha worked on Naive Bayes. Anwesha and Raj
worked on the notebooks for transfer learning using DistilBERT, which was done as a part of the CS 230 project. All
members ran their code for determining the performance of transfer between each pair of datasets, in both the zero-shot
and the few-shot setting. All members contributed to the report and poster.

References

[1] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card,
Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen Creel, Jared Quincy Davis, Dorottya Demszky,
Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-
Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha,
Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas
Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar
Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, and et al. On the opportunities and
risks of foundation models. CoRR, abs/2108.07258, 2021.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171-4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[3] Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual BERT? In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 4996-5001, Florence, Italy, July
2019. Association for Computational Linguistics.

[4] Yuki Arase and Jun’ichi Tsujii. Transfer fine-tuning: A BERT case study. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-1IJCNLP), pages 5393-5404, Hong Kong, China, November 2019. Association for
Computational Linguistics.

[5] Ruijun Liu, Yuqgian Shi, Changjiang Ji, and Ming Jia. A survey of sentiment analysis based on transfer learning.
IEEE Access, 7:85401-85412, 2019.

[6] Ariadna de Arriba, Marc Oriol, and Xavier Franch. Applying transfer learning to sentiment analysis in social
media. In 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW), pages 342-348,
2021.

[7] Peter D. Turney and Michael L. Littman. Measuring praise and criticism: Inference of semantic orientation from
association. ACM Trans. Inf. Syst., 21(4):315-346, oct 2003.

[8] Minqging Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD °04, page 168—177, New York, NY,
USA, 2004. Association for Computing Machinery.

[9] Felipe Bravo-Marquez, Eibe Frank, and Bernhard Pfahringer. From opinion lexicons to sentiment classification of
tweets and vice versa: A transfer learning approach. 10 2016.

[10] Ai Yang, Jianghao Lin, Yong Zhou, and Chen Jin. Research on building a chinese sentiment lexicon based on
so-pmi. Applied Mechanics and Materials, 263-266:1688-1693, 12 2012.

[11] Christopher Manning and Richard Socher. Cs224n: Natural language processing with deep learning lecture notes -
word vectors i: Introduction, svd and word2vec, January 2019.

[12] Tim O’Shea, Seth Hitefield, and Johnathan Corgan. End-to-end radio traffic sequence recognition with deep
recurrent neural networks. 10 2016.

	Key Information to include
	Introduction
	Related Work
	Dataset and Features 0.5-1 pages
	Methods
	Logistic Regression
	LSTM

	Experiments/Results/Discussion
	Logistic Regression with Validation
	LSTM
	Architectural Decisions
	Different Embedding Structures

	DistilBERT

	Conclusion/Future Work
	Contributions

