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Part 1: Introduction

The Comprehensive AI Services (CAIS) framework is a proposal detailed in Reframing

Superintelligence (Drexler, 2019) that more concretely conceptualizes the progress of AI

development towards a superintelligent system. Contrary to the traditional idea of a singleton

superintelligent AGI agent, Drexler forecasts the development of a suite of AI services. Each AI

service is a system that delivers bounded results using bounded resources in bounded time for

some specific task, and each has superintelligent capabilities within its narrow objective or task.

He argues that the majority of complex problems humans face can be broken down into tasks,

and thus a comprehensive suite of services would theoretically be able to complete a wide range

of tasks, creating a generally intelligent system. In light of arguments for potential existential

risks posed by AI in the long term (Bostrom, 2014) (Russell, 2015), this paper argues that

developing powerful AI systems in line with the CAIS framework is not just likely but should be

encouraged, due to the potential for enhanced safety measures to mitigate AI existential risk.

This paper presents the following three hypotheses:

(1) It is plausible that powerful AI systems will be developed in a manner outlined in

Reframing Superintelligence (Drexler, 2019) in the nearer term, and the CAIS framework

is potentially more immediately realizable for future developments in AI.

(2) It is easier to make safer, more interpretable, and more transparent agents using CAIS

compared to a traditional singleton AGI. The application of concrete safety tools can

contribute to mitigating the existential risk posed by powerful AI systems.

(3) Most previous work in AI safety has, to varying degrees, assumed that powerful AI

systems will be developed as singleton AGI systems. In light of (1) and (2), below are

some proposals for future research areas that warrant particularly close attention:



(a) safety benchmarking tools: These tools will be applied pre-deployment to ensure

safe and comprehensive simulation techniques, demonstrating that the AI system

generates the correct outputs for a wide variety of valid inputs, including specific

edge cases.

(b) transparency and interpretability tools: These tools will be applied both

pre-deployment and post-deployment. Pre-deployment transparency and

interpretability tools improve our ability to predict the impact of the service(s)

after deployment. Post-deployment tools would speed up the process of safety

checking and determining if and when models need to be temporarily stopped and

retrained.

(c) monitoring systems: These tools will be applied to monitor the performance of the

AI services post-deployment. This is related to the application of the previous

category of tools, in order to determine if and when models need to be

temporarily stopped and retrained.

(d) hierarchical RL systems: The development of such systems is premised on the

development of the previous three tools, especially sound simulation techniques.

This paper will begin with a high level overview of Reframing Superintelligence

(Drexler, 2019), paying particular attention to the sections detailing the CAIS framework. It then

discusses the plausibility of CAIS and engages in a comparative analysis of the risks posed by

the CAIS framework and traditional AGI. Finally, it puts forward four opportunities for future

research in light of the prior discussion.



Part 2: Hypothesis 1 - Plausibility and Realizability of CAIS

Below is an overview of five key elements of the CAIS model, paying particular attention

to the features that are distinct from a traditional singleton AGI agent:

(a) Definition of “service”

A service is an AI system that has a narrow objective or goal, and delivers bounded

results for some task using bounded resources in bounded time. Each service has the potential to

be superintelligent in its narrow objective, though this does not necessarily make the task simple.

For example, superintelligent language translation would count as a service, even though it is a

complex task that requires a very detailed understanding of the world and human society. The

bounded nature of each service prevents the system from engaging in long-term planning

processes, since it is optimizing for a bounded task. The high optimization pressure towards a

narrow task allows the system to avoid the problems associated with the standard convergent

instrumental subgoals (Bostrom, 2014). Bilevel optimization techniques can be used to bridge

the disparate narrow services. The outer optimization task (or upper level task) can be

decomposed into a sequence of nested inner optimization task(s) (or lower level task(s)) such

that the sequence of optimal solutions of these relaxed problems converges to a potential feasible

solution to the upper level optimization problem (Tuy, 1998) (Sinha, 2013). This is distinct from

the traditional notion of a singleton AGI agent, which has arbitrary reasoning capabilities that

can be applied to a wide variety of problems, similar to general human reasoning.

(b) Distributed system of services

The CAIS framework describes a distributed system of services. This implies that the

output(s) of one service in the system is not automatically fed into other services. As a result, the

outputs from each service can be individually verified. This is a crucial feature enabling the

increased transparency and interpretability of a system constructed using this framework. Unlike

an end-to-end singleton AGI system where outputs from several networks are fed from one

network to another, with only the final output being interpreted, the interactions between services

in the CAIS framework occur through clearly defined communication channels, allowing

programmers to more easily backtrace and identify any errors that propagate through the system.



(c) Comprehensive system of services

A vast majority of human activities can be decomposed into smaller tasks. For example,

driving a car requires high-speed and high-accuracy visual and auditory processing,

decision-making, and fine motor control, each of which can be further decomposed into narrower

tasks of higher granularity. Though each individual service has a narrow objective, given a

sufficiently broad or comprehensive set of narrow services, one can theoretically complete any

task, thus this collection of services in aggregate can be considered generally intelligent.

However, in order to reach the state where the system has a sufficiently comprehensive set of

services, the system must have a service dedicated to creating new services. Such a service must

first recognize that current services are insufficient for a given task, reason about what new

service(s) is/are needed to complete this task, and call the relevant existing service(s) or signal to

human engineers to develop the new service(s) needed. Therefore, the comprehensive nature of

the system is analogous to the idea of generality in artificial general intelligence. Rather than a

single end-to-end system that is capable of arbitrary general reasoning, “general” intelligence in

the case of CAIS would involve a service that has superintelligent capability in matching the task

provided to the specialized service(s) that can perform that task. If there are capabilities required

that the system does not currently have, it either initiates or proposes the development of those

services to address this need. Ultimately, rather than acting like a single central processing unit

that strives to achieve a particular goal, the central processing unit would be more analogous to a

search engine, searching through tasks it can perform and calling upon a series of subroutines to

achieve the goal.

(d) Separation of R&D and applications

In the CAIS framework, AI R&D and AI applications are separated. The former is driven

by humans, though the R&D processes may be (at least partially) automated. This leads to

recursive technological improvement, which is distinct from recursive self-improvement in that

the improvement arises from improvements in basic AI building blocks which feed back into the

R&D services. An analogy to describe this separation is that an autonomous vehicle should be

focused on getting the human passenger from origin to destination safely. It should not engage in

processes that enable it to become a better autonomous vehicle, for instance by creating new

algorithms to improve its performance by speeding up its neural networks. Such processes



should occur under human supervision separately from the period when the system is deployed.

This is a crucial feature improving the predictability of systems built using this framework

compared to singleton AGI agents that potentially have divergent goals. Such systems render

humans powerless if the agent is able to recursively self-improve, increasing the divergence

between its own goals and human goals. This separation ensures that human engineers maintain

control in reviewing the outputs of individual services in the system, and can thus determine the

direction of R&D efforts.

(e) Limited extent of information exchange with the world

The CAIS framework argues for limiting the channels through which the AI systems can

influence the world, as an additional layer of control that humans can maintain over AI systems.

This is not necessarily limited to physical influence over the world and environment, for example

through the embodiment of the AI system. This refers more generally to the extent to which AI

systems are able to send and receive information to and from the world and human society. For

instance, giving an AI system unfettered access to the Internet gives it tremendous ability to

engage in arbitrary interactions with the world and human society, providing it the ability to

effect tangible change in the real world through interactions with humans. Limiting the extent to

which AI services can exchange information with the outside world will enable humans to

preserve greater control over the predictability of the overall system.

Overall, the key argument of the CAIS framework is that general intelligence need not

necessarily look like a singleton agent created with the explicit goal of building an agent

capability of arbitrary general reasoning. Instead, it may look like a collection of services or

product offerings, analogous to the ‘app store model’ in which we have access to a system that is,

overall, generally intelligent because of the expansion in breadth and depth of AI services

available to us. It predicts that instead of relying on some breakthrough in AI that allows us to

achieve general intelligence similar to general human reasoning, narrow AI will continue

improving significantly at performing each of its specialized tasks, and the range of tasks that

can be achieved by AI services will continue to expand. Once a sufficient number of services

have been developed, especially to the level of superintelligent capability, the services that the



overall system can provide will be sufficiently comprehensive so as to resemble general

intelligence.

Given the current developments in AI and machine learning, specifically the trends

towards superintelligence observed in narrow AI, in comparison to the progress towards an agent

that exhibits general reasoning capabilities, it seems plausible that powerful AI systems will be

developed in a manner outlined by the CAIS framework. In other words, it is potentially more

realistic that we will achieve the disparate capabilities of an AGI agent before we can actually

create a singleton AGI agent, and that CAIS systems will be realized earlier than traditional

monolithic AGI agents.



Part 3: Hypothesis 2 - Enhanced safety of CAIS systems

Given the key features of systems developed in line with the CAIS framework described

above, I propose that CAIS systems are not only more likely to be realized earlier than singleton

AGI agents, but are also safer and less likely to lead to catastrophic outcomes.

Firstly, the nature of CAIS systems, which comprise a wide range of narrow services,

reduces the possibility of reward hacking leading to unintended outcomes as compared to general

optimization problems. The narrow problem definitions of each service makes it easier for

engineers to generate trip wires to check individual services and monitor their behavior and

outputs. The limited scope of each individual system makes it easier to verify, both formally and

experimentally, that the outputs of the behavior are safe and as predicted. Trip wires are plausible

vulnerabilities that are deliberately introduced to detect whether an agent attempts to hack its

reward function (Amodei et al., 2016). An agent technically has the ability to exploit these

vulnerabilities but should not if its value function is correct. If these vulnerabilities are exploited,

humans are alerted and the agent can be stopped, thus reducing the risk or at least providing

diagnostics about reward hacking behavior.

Secondly, the slower projected takeoff speed of CAIS systems relative to a singleton AGI

agent is an additional safety feature. AI takeoff speeds refers to how quickly the production and

deployment of AI will be leading up to transformative AI, which is relevant for estimating and

mitigating potential risks from advanced AI (Karnofsky, 2016). The distributed nature of the

CAIS system and the fact that it does not undergo recursive self-improvement will likely result

in a slow-medium speed takeoff situation. The iterative development of individual services, as

well as the broadening of scope of the overall system by adding services, will still be largely

driven by humans. Furthermore, in the CAIS framework, the system is never fully autonomous,

and still requires relatively high human involvement. Unlike a singleton AGI agent, CAIS

systems will never become “hands-off” systems in which they are completely autonomous and

not reliant on human input whatsoever. Monolithic AGI agents are predicted to have especially

fast takeoff speeds because they have little to no couplings to humans. As soon as an AGI agent

develops the ability to recursively self-modify or self-improve, it experiences an exponentially

fast rate of development. The slower takeoff speed of CAIS systems is crucial to its enhanced



safety. It provides time for any recognition lag that may occur between the onset of unexpected

behavior and the identification of this behavior by humans, and the implementation lag in taking

steps to correct this behavior or shutting down the service. It also provides time for legislation

inertia and global cooperation efforts to understand the development of these systems and come

to a mutual agreement on global standards to ensure the safe development of such AI systems,

similar to the measures taken to mitigate the existential risk of nuclear warfare. Ultimately, the

slow takeoff speed of CAIS systems could potentially help to develop safer AGI and catalyze the

enforcement of restrictions on experimentation and development related to AGI.

Overall, rather than the traditional idea of a single, end-to-end, opaque and

superintelligent agent that we must try to analyze in advance without really knowing what it will

look like or how it will behave, we have a connected network of disparate services. In the event

that there is an error in one of the services, or we do not want the system to be able to perform

certain tasks for whatever reason, we can simply shut down the individual service(s) and stop the

system’s access to those services. This eliminates the risk of needing to outsmart or outmaneuver

a superintelligent, opaque, end-to-end agent. The nature of the system that responds to

complicated tasks by calling upon one or a few of the myriad specialized services that have been

developed makes it easier to create safer, interpretable agents using CAIS. While these safety

measures do not guarantee that the system will be safe, such measures create multiple checks and

safeguards for unsafe behavior, and limits the negative repercussions if unexpected behavior

does occur.



Part 4: Hypothesis 3 - Proposals for Future Research

In light of the prior two hypotheses, below are some proposals for future research areas

that warrant particularly close attention. A list of AI safety tools exists in (Amodei et al., 2016),

however these are four tools that are especially relevant in light of the plausibility of CAIS. One

commonality to note that is shared by the four tools is the high level of human involvement -

human engineers are highly involved in developing, applying, and interpreting the outputs of

these tools, both pre- and post-deployment.

(a) verification tools via simulation

The development of safety benchmarking tools includes safe, accurate, and

comprehensive simulation techniques for safe exploration to be applied during model training.

Unlike some traditional assumptions about how reinforcement learning agents will be deployed,

it is critical that the agent’s policy remains static after deployment to ensure the predictability of

the model. Simulation techniques in this case can refer to either online virtual simulations or

physical simulations in a safe testing environment, or a combination of both. For example, using

the analogy of an office cleaning robot (Sutton & Barto, 1998), the safety of the system could

first be verified in a virtual simulation (with events controlled by human programmers). The

advantage of the virtual simulation is that it is easy to reset the simulation to an initialization

state, tweak or modify variables in the simulation, and deliberately put the robot in unusual or

“edge case” situations to test its response. It is also easy to investigate situations in which the

agent responds in unexpected manners. Once the safety of the system has been ascertained to a

certain level, a physical simulation with volunteer test subjects could be implemented, so long as

the necessary precautionary measures (specifically the ability to quickly stop the agent) are

taken. The advantage of the physical simulation is that it could introduce some “randomness”

that is inherent in a real office situation that may not be accounted for in the virtual simulation.

For this technique to be successfully implemented, one must ensure that the proxy simulation

environment is similar to what the agent will actually encounter in reality. Techniques such as

domain randomization (Peng, 2017) can also ensure less distributional shift between simulation

and the real world, and prevent the model from overfitting to situations in the training data and

focus on the important aspects of the simulation. Such techniques are critical for AI



safety-related research to improve the predictability of individual services in the CAIS

framework.

(b) transparency and interpretability tools

A key advantage of CAIS is that interaction between individual systems occurs using

clearly defined communication channels. Even though each individual service may be opaque,

the system overall is interpretable given that the outputs passed from one narrow subagent to

another can be traced. Similar to the concept of decomposition in software engineering, the

additional advantage of specifying bounded tasks is that we can backtrace and identify problems

in a system by narrowing it down to one or a few subagents, as opposed to writing off an entire

AGI agent as incorrectly trained. Since the models comprising the system are static, errors in

training of one model will not propagate and compromise successive models which take the

outputs of the problematic model as inputs. Capitalizing on the distributed nature of the CAIS

system will enable us to circumvent transparency issues with end-to-end singleton AGI agents.

In particular, services dedicated to prediction of outcomes when the AI system has been

deployed may be helpful in speeding up the safety verification process. These services should be

trained to predict how other component services will behave, giving insight into the potential

benefits and risks they bring about. For example, if the system is given a task of mapping a route

from origin to destination, a map generator would provide a route and a prediction of how long it

will take. A predictive service would check if the predictions provided matched the actual

amount of time taken to travel from origin to destination, and can thus be used to detect

distributional shifts or divergence in outcome. This would act as a signal to engineers indicating

that the model needs to be retrained or updated. These tools will be applied both pre-deployment

and post-deployment. Pre-deployment transparency and interpretability tools improve our ability

to predict the impact of the service(s) after deployment, thus allowing us to make the necessary

modifications to the system before deployment. Post-deployment tools would speed up the

process of safety checking and determining if and when models need to be temporarily stopped

and retrained. Overall, transparency and interpretability are of paramount importance for

intelligent agents to be successfully integrated into human society. A system of narrowly

intelligent subagents connected by clearly defined communication channels provides a much



safer alternative to a monolithic AGI agent where the explainability of its actions is significantly

more challenging.

(c) monitoring systems

The development of systems to monitor particular metrics post-deployment will be

essential in ensuring the system’s safety after training. These tools will be applied to monitor the

performance of the AI services post-deployment. This is related to the application of the previous

category of tools, in order to determine if and when models need to be temporarily stopped and

retrained. This is especially important for specific edge cases that may not have been captured

during training and ensures the system does not respond in an unexpected manner. If any specific

pattern is observed among instances when the system fails to respond, the system can be

retrained to account for that specific instance.

(d) hierarchical reinforcement learning (RL) systems

Finally, the achievement of the aforementioned three tools could enable the development

of hierarchical reinforcement learning systems. In hierarchical RL systems, a top-level agent

takes a small number of abstract actions and completes them by delegating them to sub-agents,

which it incentivizes with a synthetic reward signal representing correct completion of the action.

These sub-agents themselves delegate to sub-sub-agents, and at the lowest level, agents directly

take primitive actions in the environment. The overarching planning agent may be able to learn

from very sparse rewards, since it does not need to learn how to implement the details of its

policy. On the other hand, the sub-agents will receive a dense reward signal, since they are

optimizing synthetic reward signals defined by higher-level agents. Hierarchical RL is still an

active research area (Barto & Mahadevan, 2003). With the above developments, it could be

possible for an overarching “planning” service in the CAIS framework to distribute roles among

smaller systems, which themselves recursively delegate to RL sub-systems at the more stochastic

lower levels. This is similar to previously proposed hybrid approaches to hierarchical RL

involving RL teleo-operators (RL-TOPs) (Ryan & Reid, 2000). The idea of RL-TOPs is in line

with the comprehensive nature of the CAIS framework described in Part 2(c), in that the central

processing unit of the system would be more analogous to a distributive system that searches

through tasks it can perform and calls upon a series of subroutines to achieve the goal.



Part 5: Conclusion

In this paper, I have put forward three hypotheses related to the realizability and

enhanced safety on the CAIS framework in comparison to a traditional singleton AGI unit, as

well as four opportunities for future research in light of the prior discussion. Ultimately, a

connected system of AI subagents reduces the risks associated with low transparency,

interpretability, and predictability of end-to-end singleton agents, while also yielding tangible

benefits through the division and specialization of narrow functions in the suite of AI services.

Overall, this contributes to reducing the likelihood of AI agents becoming a significant

destabilizing force in society, because in this framework, humans are still actively involved in the

construction, operation, and monitoring of AI systems. The process of testing, training, and

deploying AI services is still ultimately in the control of human programmers. This system

reflects the interdependence between humans and machines that we should strive towards to

mitigate AI existential risk, as opposed to a system of complete autonomy and potential

replacement that arises from the development of monolithic AGI agents.
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