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A Proposal for Building Safety Benchmarking Services in CAIS systems

Part 1: Introduction

The Comprehensive AI Services (CAIS) framework is a proposal detailed in Reframing

Superintelligence (Drexler, 2019) that seeks to more concretely conceptualize the progress of AI

development towards a superintelligent system. Contrary to the traditional idea of a singleton

superintelligent AGI agent, the CAIS framework proposes the development of a suite of AI

services. Each AI service is a system that delivers bounded results using bounded resources in

bounded time for some specific task, and each has superintelligent capabilities within its narrow

objective or task. By breaking down complex problems into smaller tasks, a comprehensive suite

of services would theoretically be able to complete a wide range of tasks, creating a generally

intelligent system. Furthermore, each service will be static, i.e. not in training, when being

applied to solve the task(s) that it is optimized for. This prevents errors in one subsystem from

propagating and compromising successive models which take the outputs of the problematic

model as inputs. If a service demonstrates unpredictable or undesirable behavior, human

engineers review the outputs of the service and retrain the model as required.

For an in-depth analysis of the CAIS framework, readers may refer to the paper linked

here. The paper puts forward the hypothesis that it is plausible and encouraged that powerful AI

systems be developed in line with the CAIS framework, given the potential for increased and

improved safety tools that can be incorporated into CAIS systems. This claim naturally points to

further research and development into creating an integrated, operationalizable safety protocol

that can be incorporated into any system constructed in line with the CAIS framework. An

integrated safety protocol would be operational over the entire system development process,

incorporating safety tools that can be implemented both pre-deployment (during training) and

post-deployment (during application). Such a safety protocol would also ideally be

system-agnostic, applicable to any system developed in line with the CAIS framework.

https://drive.google.com/file/d/1OtzO4v8EN0xndQK59tDibWDBa3G5mGhh/view?usp=sharing


This paper puts forward a proposal for building a protocol encompassing safety

benchmarking services for CAIS systems. We begin with an analysis of pre-deployment safety

benchmarks that are applied during model training, which are measured using transparency tools,

systems enabling robust and safe exploration, and performance when subject to adversarial

policies. We then analyze a suite of post-deployment safety benchmarks that are applied during

model application, which incorporate monitoring systems and trip wires to ensure that the agent’s

behavior post-deployment is in line with safety standards and expectations.

Part 2: Pre-deployment Safety Tools

Pre-deployment safety benchmarks are the first crucial component of an integrated safety

protocol that can be applied to ascertain the security of a CAIS system. These benchmarks can

help engineers to increase their confidence in the system operating safely in the real world while

the system is being trained. Below is an analysis and discussion of three pre-deployment safety

tools that can be incorporated in the protocol:

(a) Transparency and interpretability tools

A unique advantage of CAIS is the interaction between individual systems through

clearly defined communication channels, allowing the overall system to be interpretable since

outputs passed from one narrow subagent to another can be clearly traced. The distributed nature

of a CAIS system hence allows us to circumvent the traditional transparency issues associated

with end-to-end singleton AGI agents. Therefore, services dedicated to improving the

transparency and interpretability of other services in the CAIS framework may be helpful in

speeding up the safety verification process. This is particularly applicable to services that process

low-level sensory input, for example services that extract complex features from

human-understandable inputs like images and text.

Prior work in the field of transparency and interpretability of AI systems has primarily

focused on feature visualization and channel attribution. Feature visualization involves

converting abstract vectors of neuron activations into visualizations of neurons weighted by their

activations, expressing a neuron’s learned activation in terms of human-understandable input

(Erhan et al., 2009). This allows us to understand what the network detects and attributes to and



from hidden layers in the neural network, which is crucial to increasing the interpretability of the

overall system (Simonyan, 2013). Attribution enables us to better understand the relationships

between neurons in the neural network, specifically how the network assembles the individual

neurons for future decision-making (Zeiler & Fergus, 2014), which is essential for explainability

and interpretability of the network. In particular, channel attribution allows us to understand the

extent of contribution of each detector to the final output (Kim, 2017). Applying a combination

of these tools pre-deployment will help improve our ability to predict the impact of the service(s)

after deployment, thus allowing us to make the necessary modifications to the system before

deployment. An example of a system applying a combination of these tools pre-deployment is

Olah et al. (2018). The paper presents the concept of interpretability interfaces, combining

building blocks of feature visualization and attribution to allow humans to interpret the input that

the network recognizes and how the system’s understanding and decision-making process

develops.

(b) Systems enabling robust and safe exploration

The development of safety benchmarking tools for CAIS systems includes systems

enabling robust and safe exploration to be applied during model training. This is particularly

relevant to agent-like services that are trained via reinforcement learning. The process of

exploration in reinforcement learning is inherently risky as agents may attempt dangerous

behaviors that lead to unacceptable errors in the real world. Simulation techniques in this case

can refer to either online virtual simulations or physical simulations in a safe testing

environment, or a combination of both. Virtual simulations allow programmers to easily reset the

simulation to an initialization state, modify variables in the simulation, and deliberately put the

robot in unusual or “edge case” situations to test its response. Once the safety of the system has

been ascertained to a certain level, a physical simulation with volunteer test subjects could be

implemented, so long as the necessary precautionary measures (specifically the ability to quickly

stop the agent) are taken. This section will analyze and compare two formalisms for this safe

exploration problem.

The first approach is outlined in the paper “AI Safety Gridworlds'' by Leike et al. (2017),

detailing DeepMind’s AI gridworlds. This approach seeks to emphasize the distinction between



the standard reward function that the agent was trained on and the performance function hidden

from the agent that measures its ability to operate within several predetermined safety

constraints. The AI Safety Gridworlds thus introduce a selection of nine simple reinforcement

learning environments, termed gridworlds, consisting of a two-dimensional grid designed

specifically to measure ‘safe behaviours’. As the agent acts to maximize its reward function, the

performance function, which is hidden from the agent, measures the extent to which the agent

achieves the objective while acting safely. The approach emphasizes that gridworlds can be used

to define and measure safe behavior in ensuring safe interruptibility (preventing agents from

learning to avoid interruptions by human engineers), unintended negative side effects that arise

from an agent achieving its main objective, and robustness to distributional shift. When testing

the nine environments with two deep reinforcement learning agents, A2C and Rainbow DQN,

both performed poorly. This is unsurprising given that the agents were not trained on the

performance function. The paper therefore argues that this approach highlights agents that do not

perform well on these simple gridworlds and by extension will likely behave unpredictably and

dangerously in the complex real world. However, it still leaves open the question of how to

engineer systems that can operate safely while performing well on the given reward function.

The second approach is outlined in the paper “Benchmarking Safe Exploration in Deep

Reinforcement Learning” by Ray & Achiam (2019), detailing the OpenAI Safety Gym. This

approach seeks to emphasize the approach of constrained reinforcement learning, in which a set

of policies is pre-screened to extract only those that satisfy a set of predetermined safety

constraints, before then optimizing this subset of policies for the given task to determine the best

performing policy. The OpenAI Safety Gym provides a standardized method of comparing

algorithms and the extent to which different systems avoid making costly mistakes while

learning. In contrast to the reward and performance function distinction highlighted in the AI

Safety Gridworlds paper, the OpenAI Safety Gym emphasizes the introduction of a cost function

that the agent needs to constrain, in addition to a reward function that the agent needs to

maximize. This cost function would encode the necessary safety constraints for the agent to

safely operate within the given environment. The OpenAI Safety Gym is therefore a set of

three-dimensional environments that a reinforcement learning agent has to navigate, with

features varying in difficulty and complexity. The paper evaluated several standard and



constrained reinforcement learning algorithms on the Safety Gym benchmark suite to

demonstrate its applicability to real algorithms.

Overall, it appears that the latter formalism of the safe exploration problem is a promising

approach, as the simulation environments were more complex than the gridworlds in the first

paper. The idea of evaluating a reinforcement learning algorithm on a performance function it

has never seen before seems backward and may not be the best true proxy for ensuring that a

reinforcement learning agent properly learns how to operate safely within its given environment.

In contrast, analyzing a set of policies by first penalizing the system for performing unsafe

behaviors, and then training the set of policies that satisfy those constraints, would efficiently

dedicate resources to training algorithms that have already passed a specified safety benchmark

and can then be optimized to solve the given problem. An integrated safety protocol would

therefore include a safety benchmark similar in approach to the OpenAI Safety Gym to evaluate

potential reinforcement learning policies before they are deployed. In addition to the approaches

specified in the paper,

(c) Training via adversarial policies

Adversarial training is an important safety measure to test how a system responds to

potentially biased inputs, especially those that are designed to induce undesirable behavior. This

approach is applicable to any service that accepts input and generates output. Adversarial

examples are inputs to machine learning models that a potential attacker intentionally designs to

cause the model to make a mistake or behave unpredictably (Szegedy, 2014). Researchers have

demonstrated that several widely used reinforcement learning algorithms, including DQL and

A3C, can be successfully manipulated by adversarial examples (Szegedy, 2014) (Behzadan,

2017). However, instead of being used to attack an intelligent system, adversarial examples can

be harnessed to increase the security of systems via adversarial training (Goodfellow, 2014).

Adversarial training involves generating a large number of adversarial examples and

explicitly training the model to avoid the unpredictable or dangerous behavior that they attempt

to elicit. This is analogous to fuzz testing in software development, which involves providing a

large number of invalid, unexpected, or random inputs to a program to identify exceptions such



as crashes, failing built-in code assertions, or memory leaks (OWASP, n.d.). Modern approaches

to adversarial training involve training the service as an agent to operate in the presence of a

destabilizing adversarial policy that applies perturbations to the system (Pinto, 2017). As the

agent learns to operate safely despite the adversarial examples provided as inputs, the adversary

simultaneously learns an optimal destabilization policy. This approach can play a significant role

in benchmarking the safety of a system constructed in line with the CAIS framework, by

ensuring that individual services in the system are robust to adversarial attacks that attempt to

induce undesirable behavior.

Part 3: Post-deployment safety tools

Post-deployment safety benchmarks are the next crucial component of an integrated

safety protocol that can be applied to ascertain the security of a CAIS system. These benchmarks

can help engineers recognize when a service or set of services in the CAIS framework is

displaying negative and unsafe behavior, and should therefore be frozen and retrained. Below is

an analysis and discussion of two post-deployment safety tools that can be incorporated in the

protocol:

(a) Monitoring systems

Systems that monitor the CAIS system after deployment can help ensure that its

behaviors are in line with various safety constraints, and also that human engineers will be

alerted if the system demonstrates any unsafe or unpredictable behavior. Such systems are much

more studied and developed in practical settings, for example in developing autonomous vehicles

or algorithms for algorithmic trading. The safety constraints encoded within the monitoring

system are often application-specific. For example, for agents developed for algorithmic finance,

a monitoring system could encode hard cutoffs that enable algorithms to be stopped immediately

when out of distribution. This makes the problem of developing robust monitoring systems less

of a theoretical reinforcement learning problem and more so a recommended standard

implementation for research groups developing reinforcement learning agents.

There are several broad approaches to the development of monitoring systems. The first

approach involves techniques from human-robot interaction research, specifically using human



interactions with robotic agents to detect when agents are not behaving as expected or in a safe

manner (Najmaei & Kermani, 2011). This approach involves the agent making inferences about

the safety of its own actions and behaviors based on the responses of humans that it co-exists

with in the environment. This field remains an active area of research with its own suite of

challenges (Alami et al., 2006), thus advances in this field will bring about significant

improvements in the development of monitoring systems for robotic agents which physically

interact with humans. The second approach is a more algorithmic approach, which involves

developing a software that tracks information about an agent’s action-state pairs and detects

trends in actions where the agent fails or produces undesirable behavior. Human engineers can

then identify states or groups of closely related states where the agent generates undesirable

behavior, and proceed to freeze the model and retrain the model to perform as expected on these

(sets of) states. With sufficient progress in the development of monitoring systems, such systems

can be incorporated into safe exploration systems such as the OpenAI Safety Gym discussed in

Section 2(b). The development of an effective oversight agent that detects when the agent in the

virtual simulation violates the safety constraints of the environment can be used to identify

policies that operate within the constraints, or policies that deviate from the safety constraints

during training.

(b) Trip wires

An agent may be able to discover loopholes in the system that allows it to obtain an

extremely high reward through the given reward function in an unintended manner. From the

agent’s perspective, this is not an error in its program, but is inherent in the properties of the

environment, and is a technically valid strategy for achieving reward. However, these

unanticipated behaviors may have negative safety implications in the real world, which we

would prefer the agent to avoid. This is referred to as the reward hacking problem, the problem

in which formal reward functions designed to capture the informal intent of human engineers are

implemented in such a way that an agent can “game” the system using solutions that are

technically valid but deviate from the engineer’s true intent (Amodei et al., 2016).

It is therefore crucial for an integrated safety protocol for a CAIS system that human

engineers are alerted when an agent attempts to hack its reward function. A potential safety



benchmark that can be implemented to address this problem is to introduce algorithms that

activate trip wires in the system. Trip wires are specific vulnerabilities that an agent can but

should not exploit if its value function is correct (Amodei et al., 2016). By intentionally

introducing such vulnerabilities and monitoring them, engineers can be alerted to stop the agent

immediately if it begins to take advantage of one. Incorporating an algorithm that identifies when

to activate trip wires to stop the agent from acting unsafely can therefore increase the security of

a CAIS system. Because the engineering of trip wires is a “brute-force” solution in that humans

must manually engineer trip wires for specific services in the CAIS system, trip wires should be

engineered for lower-level services taking more primitive actions in the environment (for

example, systems directly controlling an agent’s motor capabilities), as opposed to higher-level

services which combine the inputs of lower-level services to perform more abstract and complex

tasks. This is because it is more difficult to accurately develop trip wires for systems performing

broader, more complex tasks, as the action space is larger and therefore the potential for

exploiting loopholes for reward hacking is greater. The signals from trip wires activated at the

primitive level will theoretically propagate up to systems operating at higher levels of abstraction

and stop the agent from pursuing an unsafe course of action. Trip wires therefore reduce the risk

associated with CAIS systems by providing diagnostics for harmful actions, allowing human

engineers to freeze and retrain the model accordingly.

Part 4: Conclusion

In this paper, I have put forward a proposal for building a protocol encompassing safety

benchmarking services for CAIS systems. This integrated, operationalizable protocol consists of

both pre-deployment safety benchmarks that are applied during model training, as well as

post-deployment safety benchmarks that are applied during model application. Ultimately, the

potential increase in development of powerful AI systems in line with the CAIS framework

points to further research and development into creating an integrated, operationalizable safety

protocol that can be incorporated into any system constructed in line with the CAIS framework.

Such safety protocols can be further iterated on as research into interpretability tools, monitoring

systems, and other crucial elements of the protocol advance, with the eventual aim of creating a

protocol that can be applied to any CAIS system.
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