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Abstract

Autonomous Vehicles are undoubtedly a vision of the future—a vision recognizable

in almost any science-fiction novel or movie. After years of development, how close is

that vision to reality? In the last decade, researchers and technology firms worldwide

have made remarkable breakthroughs in robotics, artificial intelligence, and perceptive

sensory technologies. For example, new research in deep learning and improvements in

data collection methods, like simulated driving time, have made autonomous technol-

ogy more advanced than ever before.

While the advancements in AI and self-driving technology thus far have been im-

pressive, just as many challenges lie ahead in enhancing the security of autonomous

systems and implementation of the system at scale. Challenges include consumer safety

and securing autonomous systems against unwanted exploitation, which will require

tackling not only technological hurdles but also challenges on ethical and public policy

fronts. This paper seeks to provide a high-level overview of current developments in

the field, as well as a look into the challenges that lie ahead through a technologi-

cal, ethical, and policy perspective, in order to make projections about the future of

autonomous vehicles.
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1 Introduction

An Automated Driving System (ADS) is a hardware-software system that can execute

dynamic driving tasks on a sustainable basis [1]. Alternative vernacular terms include au-

tonomous vehicles, autonomous driving, and self-driving cars, but ADS is the most scien-

tifically precise. ADSs have great potential to generate positive benefits for society. Given

that 94% of road casualties are caused by human error [2] as compared to only 2% caused by

vehicle failure [3], ADSs are being developed with the promise of reducing road casualties,

as they are not subject to fatigue or other causes of human error. ADSs can also help reduce

road congestion, and by extension, reduce energy consumption and emissions, as many ADSs

are used for car-sharing services and being powered by alternative energy sources. ADSs will

vastly facilitate the transportation of the elderly and mobility-impaired. Lastly, ADSs could

help reduce driving-related stress and increase productivity by reallocating the time spent

on the road to other activities, among other benefits [4]. In sum, the annual social benefits

of ADSs are projected to reach $800 billion by 2050 [5].

Research and development conducted to make ADSs more robust occurs at the inter-

section of vehicle dynamics, computer vision (which has been advanced by the evolution of

new deep learning architectures), and the availability of new sensor modalities. The rapid

development of these fields in turn facilitated a boom in this area, spanning both industry

and academia. The recent activity in the field of ADSs was accelerated by the DARPA

Grand Challenges that started in 2004, organized by the US Department of Defense [6]. As

we will see shortly, within the short span of 3 years, the number of teams that successfully

completed the challenge increased from 0 to 6. Two members from the winning and runner-

up teams of the 2005 Challenge, Professors Sebastian Thrun and Chris Urmson, led Google’s

Self-Driving Car Project. The project became Waymo in 2016 [7], considered to be one of the

leading companies in the field of ADS. Universities around the world have dedicated research

laboratories and teams working to improve the accuracy and security of ADSs. By 2013,

several large automotive companies including General Motors, Ford, Toyota, Mercedes-Benz,

Volkswagen, and BMW were developing their own ADS technologies, and continue to invest
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heavily in ADSs today. Other enterprise companies including Uber, Tesla, Cruise, Waymo,

and Argo AI have also pursued extensive ADS projects with varying degrees of automation.

Before reviewing the current state-of-the-art systems and making future projections about

the direction of the industry, it is important to reflect on the key milestones on which the

current research is premised. The concept of autonomous vehicles was already beginning

to take shape around 100 years ago, but even today, we still have a long way to go before

it can be fully realized. Research and development has ramped up significantly, especially

in the last 10 years, as artificial intelligence, robotics, and sensing modalities have vastly

improved during this period. The timeline below summarizes some of the key milestones

and breakthroughs in the development of ADSs:

Figure 1: A timeline of key milestones and developments in the field of ADS. [8] [9] [10]

In terms of system architecture, many ADSs employ a modular, divide-and-conquer ap-

proach: dividing the huge and complex task of automated driving into smaller modules, each

tackled with a unique combination of sensors and algorithms. In more recent-projects, end-

to-end architectures have been explored as an alternative for modular approaches. A variety

of different sensor technologies for 2D/3D object perception, such as cameras, radar, and

LiDAR, have been explored and benchmarked as well. Several deep learning architectures

have been developed and employed to process sensor data, especially for image processing

and object detection. Automation levels, shown in Figure 2, characterize the progress and
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abilities of these systems. The majority of current automated driving systems are Levels 2

and 3, with a few state-of-the-art system claiming to have achieved Level 4 automation.

Figure 2: A brief description of the different automation levels.

This paper will begin with an overview of the state-of-the-art techniques and practices

presently employed in the development of ADSs, specifically the computational and math-

ematical principles behind these techniques. We continue with an analysis of the technical

challenges that remain to be addressed through further research and development. We then

proceed to discuss the ethical and policy implications of the development of ADSs. We

conclude with future projections about the field and its broader implications for society.
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2 Techniques and Practices

The Automated Driving problem is an exceedingly complex and difficult problem. With

an almost infinite number of driving scenarios and possible driving maneuvers, solving the

Automated Driving problem will not just require breakthrough discoveries in computer sci-

ence and AI but will also likely demand new research work in mathematics. In this section,

we will discuss the state of current techniques and practices and delve deeper into a few

areas where interesting work is being done.

2.1 Perception

The primary perception modules on ADSs are radar, camera, LiDAR, and ultrasonic sen-

sors. The data from these sensors allow ADSs to “understand” the surrounding environment,

including predicting the movement of vehicles, pedestrians, bicycles, and other dynamic el-

ements. Other sensor data includes Global Positioning System (GPS) and speedometer and

odometer data. ADSs navigate their surroundings based on this information. Each type of

sensor has clear advantages and disadvantages and are used in many different applications.

Radio

Radar, or Radio Detection and Ranging, uses radio waves to detect obstacles and measure

distances. Radar is especially useful at night where low-light conditions make it difficult for

other sensors like cameras to pick up on objects. Radar is also advantageous because it has

a long range and is unaffected by weather. However, compared to LiDAR, radar has a lower

accuracy, especially in short ranges.

LiDAR

LiDAR, or Light Detection and Ranging, is another sensor module widely used in many

modern ADSs. LiDAR is used to determine distances in three-dimensional spaces by mea-

suring the reflection of pulsed infrared laser light. LiDAR sensors in the front, back, and on

top of a car can create a 3D cloud of points of the surroundings with very high precision
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[11]. LiDAR has a medium range and high accuracy within 200 meters, but high relative

cost and is affected by elements of weather like fog and snow.

Three-dimensional LiDAR was introduced after the DARPA Grand Challenge in 2005.

The introduction of 3D LiDAR has played a crucial role in accelerating the development of

ADSs. At the time, each spinning unit cost $75,000. Since 2005, however, the cost of LiDAR

has dramatically decreased. In 2020, Velodyne Lidar will sell a LiDAR sensor for $100 [12].

Camera

Several types of cameras are used in a wide variety of applications for automated driving.

Monocular cameras, which can detect color, is important for determining the status of traffic

lights. Omnidirectional cameras, cameras with 360◦ vision, can be used in mapping and

localization tasks [13]. In some systems, thermal cameras are used to ensure pedestrians are

detecting in any lighting conditions [14]. Event cameras, which are gaining interest, only

transmit changes in light intensity between frames [15]. This data can be especially useful

for convolutional neural networks. Cameras are critical for many automated driving tasks

and are small and cheap. However, all types of cameras are affected by weather.

2.2 System Architectures

Ego-only systems and connected systems, shown in Figure 3, are the two primary archi-

tectures in consideration for ADSs. Each system has different possible algorithmic designs

and utilize many different technologies. We will discuss the advantages and disadvantages

of both systems in Section 3.1.

2.2.1 Ego-only Systems

In ego-only systems, the vehicle operates independently based on its own sensor data

and autonomous driving design. In other words, all necessary autonomous capabilities are

performed on the vehicle without communicating with other vehicles or receiving external

data streams. Ego-only systems, as opposed to connected systems, are overwhelmingly the

most common approaches to current ADSs. There are two main types of ego-only systems.
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Figure 3: A high level overview of different autonomous architectures [13]

2.2.1.1 End-to-End System

End-to-end systems determine their own tasks and rules for automated driving based

heavily on input data [13]. Some end-to-end systems learn how humans drive by training on

human driving data. We will discuss various possible implementations in Section 2.3.1.

2.2.1.2 Modular Systems

Modular Systems break down the autonomous driving problem into several key sub-

problems or modules in hopes that the sub-tasks of autonomous driving are easier to solve.

Ego-only modular systems are the most common implementation for ADSs.

• Moving Object Tracking: Classifying objects including vehicles and pedestrians,

localizing their movements, and predicting their future movements.

• Traffic Signalization Detection: Detecting and interpreting road signs, speed signs,

and the status of traffic lights.

• Route Planning: Planning the optimal route to the destination, including which

lanes to take depending on traffic conditions.

• Motion Planning: Deciding short-term movements to avoid obstacles, switch lanes,

and more driving maneuvers.
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• Vehicle Control: Translating decisions to vehicle control, including calculating the

proper acceleration and and steering degree.

• Assessment and Decision-Making: Deciding which task to execute at the appro-

priate time.

2.2.2 Connected Systems

Connected Systems are multi-agent systems where autonomous vehicles may communi-

cate with each other as well as with sensors in their environment such as connected traffic

lights [13]. In the future, as a greater percentage of self-driving cars take the road, we may

see connected architectures become the primary architecture for ADSs. Although this is not

feasible in the short-term, we will discuss the benefits of such a system in Section 5.1 because

it is a promising vision for the future of ADSs.

2.3 Computational Principles

2.3.1 End-to-End Systems

There are three primary computational approaches to end-to-end systems: deep super-

vised learning, deep reinforcement learning, and neuroevolution.

Deep Supervised Learning

Deep supervised learning is a deep convolutional neural network trained with human

driving data [16]. The system is designed to perform like the training data, essentially

attempting to learn how humans drive. The significant drawback of this approach is that,

although it learns how the training data acts, the system poorly generalizes to other driving

scenarios. In order for this model to perform well it needs an enormous amount of training

data. But even with more data, there is an almost infinite number of complex driving

maneuvers and situations that would likely prove challenging for the model. For example,

navigating construction zones would be difficult for this method. The system is heavily

reliant on observing human driving maneuvers and cannot “think” of its own.
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Deep Reinforcement Learning

The goal of deep reinforcement learning for end-to-end systems is to choose driving actions

that result in maximal future rewards [17]. As opposed to deep supervised learning, deep

reinforcement learning does not mimic human driving. It aims to find the most optimal

method of driving. This approach is relatively new and has not yet been tested in urban

settings.

Neuroevolution

Neuroevolution uses evolutionary algorithms in order to train neural networks [18]. The

advantage of this type of training is that backpropogation is not used for training. This means

the system could better learn how to generalize. Although it has not been implemented in a

real-world solution yet, neuroevolution has been used to train prototype autonomous system.

2.3.2 Modular Systems

Problem Current Approaches

Moving Object Tracking Model Based MOT, Deep Learning Based MOT

Traffic Signalization Detection SVMs, CNNs

Route Planning A*, Dijkstra’s Algorithm

Motion Planning Interpolating Curve Based Techniques

Vehicle Control Model Predictive Control

Assessment and Decision-Making FSM, Markov Decision Processes

Table 1: An overview of the computational principles at work in modular ADSs [19].

Moving Object Tracking

There are several approaches to Moving Object Tracking (MOT). Deep Learning Based

MOT uses deep neural networks to detect the position of moving objects and then makes
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predictions on their movements. The Overfeat Convolutional Neural Network is used to

detect moving objects in three steps [20].

1. Classification: What is the object?

A convolutional neural network (CNN) is used to classify images. The neural

network is trained using supervised learning. With a labeled image dataset, backpro-

pogation is used to adjust the weights of the model to get the expected results.

2. Localization: Where is the object in the image?

In order to answer this quesion, the Overfeat CNN uses a technique called Sliding

Window Detection. A grid patch of a certain size is chosen. The classifier is run

on the grid patch. The grid patch is then slid over. This is repeated until the end

of the image. At the end of the image, we increase the size of the patch and do it

again. Unfortunately, this is a time consuming process, but on the road, situations

can change rapidly, and the vehicle cannot wait for this processing. By implementing

a convolutional approach to this algorithm, we can make it fast.

You Only Look Once (YOLO)

Instead of running the Sliding Window Detection, which requires looking at the same

image multiple times in multiple places (with various sizes of patches), we can look at

the image only once [21]. First, we divide the entire image up into certain size grid

patches. Then, we use the classifier to predict class probabilities and run bounding box

regression for each grid cell. If there are multiple objects in a single grid, we use anchor

boxes that represent the ideal shape and size of the object that was classified [21]. As

a result, YOLO is an astoundingly fast and accurate algorithm. Small improvements

have been made since it was first introduced, but it is still the primary algorithm for

real-time object detection.

For better localization, the intersection over union or IoU is calculated for the actual

bounding box and the predicted bounding box [22]. The algorithm is trained to maxi-

mize the IoU, essentially minimizing the distance between the expected and predicted
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bounding boxes. The localization step also merges bounding boxes with an algorithm

that takes classification in consideration. This means that it only merges bounding

boxes which have a high probability of being the same object.

3. Detection: Do this for all objects in the image.

This step is the same as classification and localization. However, there is an extra

step because algorithm must also distinguish the background from the objects.

After using the Overfeat CNN, the next step is to predict the future movements. The

estimated positions of these objects are recorded from the LiDAR and camera data over

time [19]. Given this data, a recurrent neural network can predict the future movement of

objects like pedestrians [23].

Traffic Signalization Detection

Traffic Signalization Detection is similar to the object tracking problem because the

YOLO algorithm is used to localize objects like stop signs, speed signs, and traffic lights. In

some implementations, Support Vector Machines (SVMs) are used to classify road signs and

interpret the status of traffic lights using color data from cameras [24].

Motion and Route Planning

ADSs need to plan an optimal route to the destination. Similar to services like Google

Maps, the mosst common method ADSs use to plan routes are graph search techniques like

A* or Dijkstra’s algorithm. Dijkstra’s algorithm finds the shortest path between an initial

node and a goal node [25]. A* improves on the efficiency of Dijkstra’s in certain cases by

using heuristics to prune certain paths.

Motion Planning uses similar techniques in order to reach short-term goals like avoiding

an obstacle. Another technique for this is curve interpolation which results in a smooth path

but is slow to compute. To avoid an obstacle, this technique interpolates a set of points that

are collision-free to find a smooth curve [13]. Services like Zoox, Waymo, and Cruise rely on

pre-mapped areas to make decisions like which lane to take.
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Vehicle Control

Based on actions from other modules, Model Predictive Control (MPC) computes the

steering, throttle, and braking needed to perform the required action [26]. MPC also models

the ADS’s behavior and attempts to correct errors. This was the method used by Stanford’s

robotic car Junior from the 2007 DARPA Urban Challenge [19].

Assessment and Decision-Making

Combining all of these possible routines, the ADS must make decisions about what the

current goal should be. For the DARPA Urban Challenge, the primary techniques used

to decide behavior were Finite State Machines, heuristics, and decision trees [19]. In more

advanced ADSs, Markov Decision Processes are used to decide behavior. For example, a

Partially Observable Markov Decision Process was used to determine whether a car can

change lanes based on a graph of distances and velocities of objects around the car [27].
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3 Challenges

We will now discuss the current challenges that need to be overcome through further

research and development before large-scale implementation of ADSs can be achieved.

3.1 Complexity of Driving Maneuvers

The first and most significant challenge from a technical standpoint is how the system

should handle complex driving maneuvers. Significant progress in AI is needed for more

complex driving maneuvers to be carried out. The specific challenges differ slightly for

different system architectures, which we will analyze in turn.

3.1.1 End-to-End Systems

For end-to-end systems, the most significant issue is the lack of hard-coded safety mea-

sures, because the system learns the optimal method of driving on its own. This would be

present in the modular architecture as one of its components. There is also the issue of

interpretability [28]. Deep learning models are often described as complicated, non-linear

“black boxes,” meaning their predictions, though possibly highly accurate, are not under-

standable by humans. As safety is the highest priority for ADSs, it is crucial for users to fully

understand the predictive models underlying their vehicle. An important body of research

is therefore dedicated to visualizing deep networks. In the case of ADSs, users would ideally

be able to visualize and easily interpret the image regions that crucially influence the final

behavior of the vehicle [29].

The different deep learning approaches to end-to-end systems each have their own merits

and drawbacks. Deep reinforcement learning and neuroevolution both require online inter-

action with the environment. They also fail repeatedly in order to learn the desired behavior

[30] [31]. This contrasts with direct supervised networks that can be trained offline with

human driving data, and once that’s done the system is not expected to fail during opera-

tion [32]. However, for direct supervised networks, it requires not only a significant amount

of labeled data, but it also uses human behavior as a basis for learning. This raises the
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question of whether we should train ADSs to drive like humans, or if it should learn a more

optimal driving method on its own using deep reinforcement learning and neuroevolution.

As a result of these unresolved challenges, end-to-end systems have not yet been realized in

real-world urban scenes.

3.1.2 Modular Systems

Moving onto the challenges facing modular architectures, we shall analyze the challenges

in each of the modules or subproblems in Figure 3.

3.1.2.1 Perception

Perception refers to the collection of information from sensors and the derivation of con-

textual inferences about the environment. Referring to the components of Modular Systems

in Section 2.2.1.2, the components Moving Object Tracking and Traffic Signalization De-

tection are included in this category. With regards to perception, we have discussed some

exteroceptive sensors used by ADSs, each with their own advantages and disadvantages.

Starting with monocular cameras, one significant advantage is color sensing, which is im-

portant for traffic light and sign recognition. Many sophisticated deep learning algorithms,

such as convolutional neural networks, have been developed for 2D image recognition and

object detection.

However, the limited field of vision of monocular cameras is an issue for higher levels of

automation. One option is to use arrays of monocular cameras and perform external cali-

bration to effectively stitch images together, but a promising alternative is a smaller number

of omnidirectional cameras (360◦ or panoramic cameras). Omnidirectional perception is

especially important to obtain inputs passed on to other modules involving navigation, lo-

calization, and mapping. One challenge, however, is that there are difficulties calibrating

the images due to the spherical distortions of the images [33].

Furthermore, research is still ongoing to improve depth perception using cameras [34].

LiDAR and radar sensors are especially useful for depth perception, as precise distances
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between objects can be measured effectively by emitting infrared light (for LiDAR) or ra-

dio waves (for radar). However, the emission of energy in the form of electromagnetic (EM)

waves can interfere with other signal-dependent hardware in the ADS, unlike cameras, which

are passive sensors that perceive EM waves in the environment. Comparing the two ultra-

sonic sensors, LiDAR tends to be more accurate for shorter distances (<200m), while radar

can detect objects at further distances away at a lower resolution [35]. Radar sensors are

also cheaper and more compact than LiDAR sensors. Thus far, incorporating sensory per-

ceptive abilities to artificial intelligence systems that come naturally to humans remains

technologically challenging. Given the complementary nature of cameras, LiDAR, and radar

sensors, future research directions can focus on combining these methods to leverage the

unique advantages provided by each of the sensor modalities.

While a collaborative system incorporating multiple modalities is promising, a common

shortcoming among most of the aforementioned technologies is that they are significantly

affected by inclement weather that compromise the illumination and/or clarity of the sur-

rounding environment. The performance of systems relying on camera-based perception

(both monocular and omnidirectional) can fluctuate with changes in lighting. The opera-

tion of camera-based ADSs in low light conditions is an ongoing field of research [36] [37].

Changes in illumination due to shifting shadows or changing weather conditions can thus

cause algorithms to fail, especially supervised learning methods. While LiDAR and radar

sensors are not as adversely affected by changes in lighting, the performance of LiDAR sen-

sors also suffers in weather conditions such as fog or snow [38]. While radars are more robust

in poor weather, as mentioned above, the resolution of radar sensors is currently too low

for short-range perception tasks. Thus, successfully performing driving tasks in inclement

weather remains a central challenge in the perception module of ADS.

3.1.2.2 Localization and Mapping

Localization involves determining the ADS’s position with respect to other objects in

the driving environment, while mapping involves creating a map with information of the

environment and context (including traffic rules). Referring to the components of Modular
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Systems in Section 2.2.1.2, the Route Planning component is included in this category.

Traditionally, satellite-based systems (e.g. GPS) can be used to estimate global position at

a relatively low cost. GPS is often integrated with Inertial Measurement Unit (IMU) systems,

and the GPS-IMU fusion is used for low-cost vehicle localization. The IMU tracks changes

in position and orientation, thus estimating vehicle position relative to initial position using

a dead reckoning algorithm. The primary shortcoming of dead reckoning is that it is subject

to cumulative errors, which requires correction at regular intervals using GPS readings.

However, while GPS readings are often accurate, they are not always available as they

require a clear view of the sky. Especially in densely populated, metropolis areas with

tunnels and tall urban infrastructure, the accuracy is further compromised [39]. GPS-IMU

fusion systems are therefore not sufficiently accurate for microlevel localization and can at

best assist with route planning.

One alternative to the GPS-IMU fusion system is using a-priori map-based localization.

This involves constructing a highly detailed map of the environment a-priori. Localization

then occurs when comparing the ADS’s position readings (usually using a GPS reading at its

initial position) with the map’s information to estimate the ADS’s position on the map. Map

construction usually falls into two broad categories: planar map construction using layers or

planes from a Geographic Information System, and construction of maps using point-cloud

matching [40]. In either case, creating and maintaining accurate maps are computationally

expensive and difficult to scale for potential large-scale implementations of ADS systems.

A-priori map-based localization is also a relatively fragile system that is sensitive to changes

in the environment. Thus, it may not be a feasible approach in the long run due to inevitable

changes in the environment and the vast size of road networks.

Studies have recently emerged to tackle this challenge by investigating simultaneous lo-

calization and mapping (SLAM). SLAM involves the construction of maps during online

interactions with the environment, while simultaneously localizing the vehicle within the

map. Starting from an unknown location within an unknown environment, the ADS locates

its own position through repeated observation of environmental features as it moves, creating

an incremental map of the surrounding environment according to its own position. SLAM
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has a significant edge over a-priori map-based localization due to their inherent flexibility.

SLAM systems can operate in any environment, and do not suffer from the same sensitivities

to environmental changes as a-priori map-based localization.

However, SLAM remains computationally challenging, especially in outdoor environ-

ments. Advances in image-based computer vision algorithms, like feature extraction and

matching, and 3-D reconstruction via triangulation, still need to be made for sufficiently ac-

curate visual SLAM to be employed in ADSs. As a result. it is currently less accurate than

performing localization with a detailed pre-built map. Despite these challenges, given the

fragility and low scalability of a-priori map-based localization, SLAM remains a promising

alternative, thus investigating methods to make SLAM more efficient is an active area of

research [41] [42].

3.1.2.3 Vehicle Control

Vehicle control refers to the selection of appropriate actuator inputs and execution of

the planned actions. Referring to the components of Modular Systems in Section 2.2.1.2,

the components Motion Planning and Vehicle Control are included in this category. There

has been a great interest in exploring the benefits that deep learning provides for vehicle

control. Deep learning allows for self-optimization of ADS behaviour from data, allowing it

to adapt to new scenarios. Deep learning is therefore suitable for vehicle control in com-

plex and dynamic environments. Instead of manually tuning each parameter iteratively to

optimize performance, deep learning enables developers to teach the system to perform the

desired behavior and generalize to new environments through learning. Learning methods

are typically classified as reinforcement learning and supervised learning, and control styles

classified as lateral control, longitudinal control and joint control.

The main challenge for deep learning methods is the large amount of data and time

required for adequate training, especially for deep reinforcement learning. The amount of

training data required to build a reliable and robust ADS can be significant. Generalizability

hence becomes an issue, since it is challenging to train an ADS for all possible scenarios
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on the road. Besides the large quantity of data, ensuring the fairness of the dataset is

also important. Increasing the quantity of data without increasing variety runs the risk of

overfitting [43]. The continuous states and actions of the dynamic environment in which the

ADS operates adds to the computational complexity due to the Curse of Dimensionality:

the computational complexity grows exponentially with the number of dimensions [44]. Not

only does this make the development and training of networks challenging, it also implies

that the vehicle must have large computing and power capabilities on-board, which affects

vehicle size/weight and cost.

Furthermore, it is unclear what the ideal neural network architecture is for a given task.

The selection of fundamental architecture, training method, learning rate, loss function,

batch size etc., is a general problem for deep learning applications, however the complex

task of autonomous driving has specific challenges [45]. Currently, most end-to-end driving

systems use smaller networks to avoid overfitting to the relatively small training datasets.

However, as mentioned above, deeper architectures reduce both bias and variance when train-

ing on large datasets. One possibility being investigated is conditional imitation learning,

which includes a different final layer for each high-level command for driving [46]. Further

research can be conducted to design architectures specific for the task of autonomous driving.

For deep reinforcement learning, the desired behaviour of the agent must be accurately

captured by the reward function, otherwise unexpected and undesirable behaviour might

occur. Goal specification is hence a challenge, especially for a complex task such as driving.

A multi-objective reward function is required, which needs to consider a variety of objectives

that may even conflict with one another. Objectives may include maintaining a safe distance

from other vehicles, staying close to the centre of the lane, avoiding pedestrians, not chang-

ing lanes too often, maintaining desired velocity, and avoiding harsh accelerations/braking.

These can easily conflict with each other in an emergency situation. Hence, the reward

function must also take into account the weight of these factors [47].
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3.1.2.4 Human-Machine Interfaces

A key component of communication between humans and vehicles is a human-machine

interaction (HMI) module. Currently, the most significant challenge with regards to HMI is

the handover issue during emergency situations. Studies have shown that humans generally

exhibit a lower cognitive load when monitoring automated driving than other tasks. Hence,

in an emergency situation, the transition from manual to automated driving and vice versa

is currently prone to failure, and often increases collision risk with surrounding vehicles [48].

Investigations into methods of maintaining human engagement are being conducted, so that

the occupants are at least aware of the ADS’s intentions and basic decision-making processes.

The general consensus is that visual HMI modules are not ideal, as they are affected

by alert response time and the time taken to read, understand the alert, and act, which

takes too long. It is also difficult to simultaneously monitor a visual HMI module while

driving in a takeover situation. The alternative, auditory HMIs, are premised on highly

accurate automatic speech recognition (ASR). Though natural language processing (NLP)

has advanced significantly in recent years, ASR is still impacted by environmental noise. In

an emergency situation, there is limited room for error, thus the NLP system cannot fail to

interpret or misinterpret the human driver. Furthermore, moving beyond a limited set of

simple voice commands to conversational NLP also remains challenging. As a result, a real

world system with an efficient handover interaction module does not exist yet [49].

3.1.2.5 Assessment and Decision-Making

ADSs should be constantly reevaluating the overall risk level of the road situation, as well

as predict the intentions of surrounding vehicles and pedestrians. Most of these approaches

employ quantitative methods (such as Bayesian methods or Hidden Markov Models). How-

ever, there is a short observation window for predicting the behavior of surrounding vehicles

or humans, but complex computational models often require longer observation periods [50].

Therefore, the primary challenge with regards to assessment is reducing the time required for

situational assessment to a few seconds or less. Especially for human drivers and pedestrians,

the unpredictability of human behavior is also a significant challenge.
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With regards to decision-making, a robust ADS should be able to sequence multiple

decisions and organize the complex driving task. As mentioned in Section 3.1.2.3, there

are several objectives that the ADS strives to achieve: staying within the lane at a safe

distance from other vehicles, identifying and responding to traffic signs and signals, avoiding

pedestrians, changing speed and lange where appropriate, etc. Organizing this complex task

and prioritizing the actions to be taken is a significant challenge that still requires further

research. This task is also difficult to generalize, as it is impossible to train a vehicle to

sequence decisions to every possible driving situation.

3.2 Cybersecurity and Exploitation

A significant practical hurdle that ADSs must overcome is ensuring comprehensive se-

curity protections. Most software systems are subject to security pitfalls with zero-day

vulnerabilities and various other exploits. However, unlike typical software systems, the re-

mote access of ADSs puts into danger the physical safety of passengers. A remote attacker

accessing an AV has the potential to control the vehicle with the potential to cause harm.

Thus, significant security research in ADSs is necessary before wide-scale adoption.

Remote attacks on ADSs are both feasible and effective. For example, split-second “phan-

tom” images like in Figure 4 can be used to trick the driver-assistance systems of a Tesla

Model X and Mobileye 630 into thinking a depth-less projection is a physical obstacle [51].

Researchers at Israel’s Ben Gurion University of the Negev demonstrated that an attacker

can embed a split-second image of a road sign into an advertisement on a digital billboard

causing the Tesla Autopilot system to suddenly stop in the middle of a road. The researchers

found that they could reliably trick the Tesla by showing an image for just 0.42 seconds [51].

The security researchers at Ben Gurion University of the Negev propose a counter-

measure consisting of four deep convolutional neural networks that can determine the au-

thenticity of an object based on the object’s light, context, surface, and depth. The system

successfully achieved a true positive rate (TPR) of 0.994 [51].

Internet-connected vehicles may also have a significant impact on traffic flows. Re-
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Figure 4: Projections can successfully trick the Tesla semi-autonomous system.

searchers at the Georgia Institute of Technology found that if 10–20% of cars in Manhattan

were somehow disabled during rush hour, half of traffic would come to a halt, preventing

emergency services from getting through [52]. Even more, they find that “with just 5% of

cars hacked, a five-by-five grid could be gridlocked within 15 minutes” [52]. The researchers

of this study warn that as more ADSs take the road, the greater the potential for a hack

that disrupts critical emergency services in cities.

In perhaps the most concerning hack of connected vehicles, Charlie Miller and Chris

Valasek, funded by a DARPA grant, demonstrated that they were able to take full control of

a Jeep Cherokee on a highway, while they were in their living room [53]. Through a cellular

connection in the Cherokee’s entertainment system, Miller and Valasek were able to gain

remote access to its steering, transmission, and brakes [53]. Although this demonstration

was a proof-of-concept, Miller and Valasek echo the concerns about security in increasingly

connected vehicles.

Security must be a priority for future ADSs, and a system of quickly deploying security

updates must be established.

3.3 Coexistence with Humans

The final challenge is ensuring ADSs can safely coexist with humans. Many of the

aforementioned developmental challenges stem from the fact that ADSs have to anticipate
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and respond to human behavior (for both drivers and pedestrians). The inherent randomness

and unpredictability of human behavior is a significant challenge due to human free will. This

is especially relevant for moving object tracking where the system has to anticipate what

humans will do next. For example, Google’s self-driving car collided with an oncoming bus

in 2016 [54]. The ADS decided to perform a lane change under the incorrect assumption

that the bus driver was going to yield. Instead, the bus driver accelerated, resulting in the

collision. Further investigations conducted by the National Transportation Safety Board

into the Uber Autonomous car crash in 2018 revealed that the pedestrian was jaywalking,

a factor that the system failed to anticipate, resulting in the collision [55]. Therefore, while

efforts have been made to develop models that more accurately predict human behavior [56],

there is an inherent challenge in the randomness associated with human behavior.

As a result of this challenge, some are of the opinion that large-scale implementation

of ADSs can only succeed if there is a complete overhaul of the system, meaning no hu-

man drivers on the road [57] [58] [59]. If the algorithms used for ADSs can be somewhat

standardized, ADSs can then mutually predict each other’s behavior facilitating the devel-

opment of large-scale connected systems as mentioned in Section 2.2.2. However, whether

this is necessary or even possible remains debated. Furthermore, vehicle-vehicle interaction

is just one part of the problem. Elements of randomness still remain due to pedestrians,

inclement weather, etc.. Robust ADS systems must be equipped to handle such situations.
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4 Ethical Discussion and Policy Implications

While this paper is primarily focused on analyzing the technical development of ADSs, it

is difficult to get a holistic view of the field without taking into consideration the ethical and

policy implications of developments in ADSs, which we will briefly review in this section.

4.1 The Trolley Problem

An ethical dilemma relevant to the discussion about ADSs is the infamous Trolley Prob-

lem. The Trolley Problem is a series of thought experiments, with the central question

revolving around whether it is justified to sacrifice one person to save five, as initially out-

lined in Thomson’s 1976 paper [60]. Philosophical theory suggests that consequentialists will

believe pulling the lever is justified, while deontologists do not. Nonetheless, the answer to

the question is ambiguous. It is true that the Trolley Problem is merely a thought exper-

iment, and developers are primarily grappling with elementary problems preventing ADSs

from being fully realized. However, these ethical dilemmas persist as a reminder about how

ADSs should respond in inevitable accident situations. It also begs the question of who

should decide how the ADSs are programmed to respond – engineers, the government, or

some third-party agency – since there is no definitive answer to the dilemma, and responses

differ widely around the world due to social, cultural, and other psychological factors.

4.2 Liability and Blackbox Nature

In 2018, an Uber self-driving car in Arizona struck and killed a pedestrian as they were

crossing the road [55]. An important question for ADSs is who is ultimately morally and

legally liable for accidents. In the case of Uber accident, the safety driver was held responsible

as evidence showed that she was distracted and could have otherwise stopped the vehicle

[61]. However, in future ADSs with higher levels of automation, there may not be a human

driver in charge of monitoring the vehicle. In such a case, it is unclear who will be held

liable: the occupant(s), the company developing the ADS, or someone else. In light of this,

AI law specialists are investigating ways of giving AI a legal personality [62].
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Furthermore, studies have shown that the highly publicized accidents during the testing

phases of ADS systems in recent years have not only cost lives, but have also undermined

public trust in and receptiveness to ADSs. Nearly three quarters of American drivers would

not trust an autonomous car, up significantly from 63% in 2017 [63]. Overcoming the

inevitable initial pushback to ADSs will be an additional challenge to overcome as companies

try to implement wider scale ADS systems.

4.3 Regulatory Measures

The primary goal of regulatory measures for ADSs should be to establish a safety certi-

fication method. Lawmakers and players in the industry have yet to establish a procedure

to simulate and test ADSs. Since there are an almost infinite number of possible driving

scenarios, simulations will likely be required to comprehensively test ADSs. Consequently,

research into how to create simulations that certify low risk and reliability of ADSs is critical.

Regulation has the opportunity to influence the design of ADSs to promote safety. The

secondary goal of regulation should be encourage and ensure that the design of ADSs is

highly redundant to minimize the chance of a catastrophic failure. However, a balance must

be achieved because regulation should not stifle innovation in the ADS space.

The National Highway Traffic Safety Administration estimates that there are 1.25 deaths

per 100 million non-autonomous vehicle miles driven [64]. Although current ADSs have a

higher death per 100 million miles, this may be attributed to failures in early ADSs and not

enough miles driven by state-of-the-art ADSs. Overall accident severity for ADSs is lower

than for human-caused accidents. Additionally, the minor accident rate among autonomous

vehicles is significantly lower than that of humans [65].

Regulators will eventually have to answer an important open question: how much safer

or better do ADSs need to be before they are considered “good enough” to be implemented

at a wide scale? Identifying a quantitative benchmark to ascertain the safety of ADSs will

be of great importance in the coming years.
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5 Conclusion

5.1 Future Projections

Consuming Mobility as a Service (MaaS)

If ADSs are successful in overcoming the current challenges, there may be a large shift

from personal vehicle-ownership to shared ownership. 40% of car drivers say that they

would be willing to replace some of their private car trips with a car-sharing service [66].

Furthermore, 20% of drivers indicate that they may not buy a planned car or sell a current

car if carsharing becomes available [66]. While this shift may already be occuring, ADSs will

only decrease the cost of shared ownership and further push this trend forward.

Shared car ownership will, importantly, decrease the environmental impacts of car own-

ership. A shared electric, self-driving car fleet is preferred over a fossil-fuel fleet and will

have significant positive impacts on the environment [66].

Logistics Revolution

When ADS trucks take the road, a logistics revolution may be imminent. Amazon’s

acquisition of Zoox foreshadows this revolution. While the Zoox acquisition was primarily

to help the startup “bring their vision of autonomous ride-hailing to reality,” according

to Amazon, Zoox’s technology includes developing zero-emission ADS vehicles, which could

easily translate to advancing Amazon’s delivery operations [67]. ADS trucks may potentially

make logistics faster, cheaper, and more efficient. Additionally, ADS trucks will reduce truck

accidents caused by drowsy driving.

This logistics revolution will also bring with it a displacement of trucking-driving jobs.

Policy must be in place to ensure that a smooth transition for this workforce occurs. The

bulk of truck-driving jobs are in short-haul and last mile trucking which are much more

difficult to automate [68]. Long-haul trucking, which constitutes significantly fewer jobs,

will be the first to be automated. Thus, there is time to institute proper policies to ensure
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that this workforce has a safety net.

Rise of Connected Systems

Though ego-only systems are currently the most common implementation for ADSs, con-

nected systems show great promise for the future of ADSs. Connected ADSs greatly reduce

traffic accidents, improve the efficiency of transportation networks, and increase quality of

life [69]. A connected architecture would allow the distance between autonomous vehicles to

decrease while still maintaining a high speed. As a result, the overall capacity of vehicles in

the network would increase, making the entire network more efficient. This requires a greater

percentage (or even a majority) of vehicles on the road to be ADSs, as connected systems are

premised on the ability of ADSs to communicate with one another. Since much of the cause

of inefficiency or accidents on the road are due to human error, with a connected system

where most vehicles are rule-based, traffic could potentially move more quickly and efficiently

when vehicles are part of a connected network. Hence, we can expect future research and

development to be increasingly focused on moving towards connected systems.

Significant progress has been made in the development of ADSs in recent years. While

there are a number of technological, ethical, and policy challenges to overcome through

further research, many advances have been made thus far, and will continue to be made.

The growing demand for ADSs will likely propel breakthroughs in AI, deep learning, and

sensor modalities. This brings us closer to robust and secure ADSs, and potentially a wider-

scale implementation of connected systems in the future.
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